मराठी

If G Be the Centroid of a Triangle Abc, Prove That: Ab2 + Bc2 + Ca2 = 3 (Ga2 + Gb2 + Gc2) - Mathematics

Advertisements
Advertisements

प्रश्न

If G be the centroid of a triangle ABC, prove that:

AB2 + BC2 + CA2 = 3 (GA2 + GB2 + GC2)

बेरीज

उत्तर

Let A(x1,y1); B(x2,y2); C(x3,y3) be the coordinates of the vertices of ΔABC.Let us assume that centroid of the ΔABC is at the origin G.So, the coordinates of G are G(0,0). 

Now,`(x_1+x_2+x_3)/3 =0; (y_1+y_2+y_3)/3 =0` 

So, `x_1+x_2+x_3=0` ...........(1)

 `y_1+y_2+y_3=0`     ..........(2)

Squaring (1) and (2), we get 

`x_1^2+x_2^2+x_3^2+2x_1x_2+2x_2x_3+2x_3x_1=0`   ..........(3)  

`y_1^2+y_2^2+y_3^2+2y_1y_2+2y_2y_3+2y_3y_1=0 ` ..........(4) 

`LHS=AB^2+BC^2+CA^2` 

`=[sqrt((x_2-x_1)^2 +(y_2-y_1)^2]]^2 +[sqrt((x_3-x_2)^2+(y_3-y_2)^2)]^2 +[sqrt((x_3-x_1)^2+(y_3-y_1)^2)]^2 ` 

`=(x_2-x_1)^2 +(y_2-y_1)^2+(x_3-x_2)^2+(y_3-y_2)^2+(x_3-x_1)^2+(y_3-y_1)^2` 

`=x_1^2x_2^2-2x_1^2+y_1^2+y_2^2-2y_1y_2+x_2^2+x_3^2-2x_2x_3+y_2^2+y_2^2+y_3^2-2y_2y_3+x_1^2+x_3^2-2x_1x_3+y_1^2+y_3^2-2y_1v_3` 

`=2(x_1^2+x_2^2+x_3^2)+2(y_1^2+y_2^2+y_3^2)-(2x_1x_2+2x_2x_3+2x_3x_1)-(2y_1y_2+2y_2y_3+2y_3y_1)` 

`=2(x_1^2+x_2^2+x_3^2)+2(y_1^2+y_2^2+y_3^2)+(x_1^2+x_2^2+x_3^2)+(y_1^2+y_2^2+y_3^2)` 

`=3(x_1^2+x_2^2+x_3^2+y_1^2+y_2^2+y_3^2)`

`RHS =3(GA^2+GB^2+GC^2)`  

`=[{sqrt((x_1-0)^2+(y_1-0)^2)}^2 +{sqrt((x_2-0)^2+(y_2-0)^2)}^2 +{sqrt((x_3-0)^2+(y_3-0)^2)}^2]`

`=3[x_1^2+x_2^2+x_3^2+y_1^2+y_2^2+y_3^2]` 

Hence, `AB^2+BC^2+CA^2=3(GA^2+GB^2+GC^2)` 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Co-Ordinate Geometry - Exercise 6.4 [पृष्ठ ३७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 6 Co-Ordinate Geometry
Exercise 6.4 | Q 9 | पृष्ठ ३७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

On which axis do the following points lie?

S(0,5)


Prove that the points (3, 0), (4, 5), (-1, 4) and (-2, -1), taken in order, form a rhombus.
Also, find its area.


Find the points of trisection of the line segment joining the points:

5, −6 and (−7, 5),


Prove that the points (4, 5) (7, 6), (6, 3) (3, 2) are the vertices of a parallelogram. Is it a rectangle.


Show that the points A (1, 0), B (5, 3), C (2, 7) and D (−2, 4) are the vertices of a parallelogram.


Points P, Q, and R in that order are dividing line segment joining A (1,6) and B(5, -2) in four equal parts. Find the coordinates of P, Q and R.


Find the coordinates of the midpoints of the line segment joining

A(3,0) and B(-5, 4)


The base BC of an equilateral triangle ABC lies on y-axis. The coordinates of point C are (0, -3). The origin is the midpoint of the base. Find the coordinates of the points A and B. Also, find the coordinates of another point D such that ABCD is a rhombus.


Find the area of a quadrilateral ABCD whose vertices area A(3, -1), B(9, -5) C(14, 0) and D(9, 19).


Find the coordinates of circumcentre and radius of circumcircle of ∆ABC if A(7, 1), B(3, 5) and C(2, 0) are given.


The measure of the angle between the coordinate axes is


 ABCD is a parallelogram with vertices  \[A ( x_1 , y_1 ), B \left( x_2 , y_2 \right), C ( x_3 , y_3 )\]   . Find the coordinates  of the fourth vertex D in terms of  \[x_1 , x_2 , x_3 , y_1 , y_2 \text{ and }  y_3\]

   

Find the centroid of the triangle whose vertices  is (−2, 3) (2, −1) (4, 0) .


If the point P (m, 3) lies on the line segment joining the points \[A\left( - \frac{2}{5}, 6 \right)\] and B (2, 8), find the value of m.

 
 

If the points A(1, –2), B(2, 3) C(a, 2) and D(– 4, –3) form a parallelogram, find the value of a and height of the parallelogram taking AB as base.  


Write the coordinates of a point on X-axis which is equidistant from the points (−3, 4) and (2, 5).


If the distance between the points (4, p) and (1, 0) is 5, then p = 


If point P is midpoint of segment joining point A(– 4, 2) and point B(6, 2), then the coordinates of P are ______


In which quadrant, does the abscissa, and ordinate of a point have the same sign?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×