English

If G Be the Centroid of a Triangle Abc, Prove That: Ab2 + Bc2 + Ca2 = 3 (Ga2 + Gb2 + Gc2) - Mathematics

Advertisements
Advertisements

Question

If G be the centroid of a triangle ABC, prove that:

AB2 + BC2 + CA2 = 3 (GA2 + GB2 + GC2)

Sum

Solution

Let A(x1,y1); B(x2,y2); C(x3,y3) be the coordinates of the vertices of ΔABC.Let us assume that centroid of the ΔABC is at the origin G.So, the coordinates of G are G(0,0). 

Now,`(x_1+x_2+x_3)/3 =0; (y_1+y_2+y_3)/3 =0` 

So, `x_1+x_2+x_3=0` ...........(1)

 `y_1+y_2+y_3=0`     ..........(2)

Squaring (1) and (2), we get 

`x_1^2+x_2^2+x_3^2+2x_1x_2+2x_2x_3+2x_3x_1=0`   ..........(3)  

`y_1^2+y_2^2+y_3^2+2y_1y_2+2y_2y_3+2y_3y_1=0 ` ..........(4) 

`LHS=AB^2+BC^2+CA^2` 

`=[sqrt((x_2-x_1)^2 +(y_2-y_1)^2]]^2 +[sqrt((x_3-x_2)^2+(y_3-y_2)^2)]^2 +[sqrt((x_3-x_1)^2+(y_3-y_1)^2)]^2 ` 

`=(x_2-x_1)^2 +(y_2-y_1)^2+(x_3-x_2)^2+(y_3-y_2)^2+(x_3-x_1)^2+(y_3-y_1)^2` 

`=x_1^2x_2^2-2x_1^2+y_1^2+y_2^2-2y_1y_2+x_2^2+x_3^2-2x_2x_3+y_2^2+y_2^2+y_3^2-2y_2y_3+x_1^2+x_3^2-2x_1x_3+y_1^2+y_3^2-2y_1v_3` 

`=2(x_1^2+x_2^2+x_3^2)+2(y_1^2+y_2^2+y_3^2)-(2x_1x_2+2x_2x_3+2x_3x_1)-(2y_1y_2+2y_2y_3+2y_3y_1)` 

`=2(x_1^2+x_2^2+x_3^2)+2(y_1^2+y_2^2+y_3^2)+(x_1^2+x_2^2+x_3^2)+(y_1^2+y_2^2+y_3^2)` 

`=3(x_1^2+x_2^2+x_3^2+y_1^2+y_2^2+y_3^2)`

`RHS =3(GA^2+GB^2+GC^2)`  

`=[{sqrt((x_1-0)^2+(y_1-0)^2)}^2 +{sqrt((x_2-0)^2+(y_2-0)^2)}^2 +{sqrt((x_3-0)^2+(y_3-0)^2)}^2]`

`=3[x_1^2+x_2^2+x_3^2+y_1^2+y_2^2+y_3^2]` 

Hence, `AB^2+BC^2+CA^2=3(GA^2+GB^2+GC^2)` 

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Co-Ordinate Geometry - Exercise 6.4 [Page 37]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 6 Co-Ordinate Geometry
Exercise 6.4 | Q 9 | Page 37

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Which point on the y-axis is equidistant from (2, 3)  and (−4, 1)?


Show that the points A(5, 6), B(1, 5), C(2, 1) and D(6,2) are the vertices of a square.


Name the quadrilateral formed, if any, by the following points, and given reasons for your answers:

A(-1,-2) B(1, 0), C (-1, 2), D(-3, 0)


Determine the ratio in which the point (-6, a) divides the join of A (-3, 1)  and B (-8, 9). Also, find the value of a.


If  p(x , y)  is point equidistant from the points A(6, -1)  and B(2,3) A , show that x – y = 3


Point A lies on the line segment PQ joining P(6, -6) and Q(-4, -1) in such a way that `(PA)/( PQ)=2/5` . If that point A also lies on the line 3x + k( y + 1 ) = 0, find the value of k.


If `P(a/2,4)`is the mid-point of the line-segment joining the points A (−6, 5) and B(−2, 3), then the value of a is


If (0, −3) and (0, 3) are the two vertices of an equilateral triangle, find the coordinates of its third vertex.    


What is the area of the triangle formed by the points O (0, 0), A (6, 0) and B (0, 4)?

 

Write the coordinates of the point dividing line segment joining points (2, 3) and (3, 4) internally in the ratio 1 : 5.


 The ratio in which the x-axis divides the segment joining (3, 6) and (12, −3) is


If the centroid of the triangle formed by (7, x) (y, −6) and (9, 10) is at (6, 3), then (x, y) =


If points A (5, pB (1, 5), C (2, 1) and D (6, 2) form a square ABCD, then p =


If P(2, 4), Q(0, 3), R(3, 6) and S(5, y) are the vertices of a parallelogram PQRS, then the value of y is


Points (1, – 1), (2, – 2), (4, – 5), (– 3, – 4) ______.


If the perpendicular distance of a point P from the x-axis is 5 units and the foot of the perpendicular lies on the negative direction of x-axis, then the point P has ______.


The points whose abscissa and ordinate have different signs will lie in ______.


The point whose ordinate is 4 and which lies on y-axis is ______.


The distance of the point (–1, 7) from x-axis is ______.


Assertion (A): Mid-point of a line segment divides the line segment in the ratio 1 : 1

Reason (R): The ratio in which the point (−3, k) divides the line segment joining the points (− 5, 4) and (− 2, 3) is 1 : 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×