Advertisements
Advertisements
प्रश्न
If G be the centroid of a triangle ABC, prove that:
AB2 + BC2 + CA2 = 3 (GA2 + GB2 + GC2)
उत्तर
Let A(x1,y1); B(x2,y2); C(x3,y3) be the coordinates of the vertices of ΔABC.Let us assume that centroid of the ΔABC is at the origin G.So, the coordinates of G are G(0,0).
Now,`(x_1+x_2+x_3)/3 =0; (y_1+y_2+y_3)/3 =0`
So, `x_1+x_2+x_3=0` ...........(1)
`y_1+y_2+y_3=0` ..........(2)
Squaring (1) and (2), we get
`x_1^2+x_2^2+x_3^2+2x_1x_2+2x_2x_3+2x_3x_1=0` ..........(3)
`y_1^2+y_2^2+y_3^2+2y_1y_2+2y_2y_3+2y_3y_1=0 ` ..........(4)
`LHS=AB^2+BC^2+CA^2`
`=[sqrt((x_2-x_1)^2 +(y_2-y_1)^2]]^2 +[sqrt((x_3-x_2)^2+(y_3-y_2)^2)]^2 +[sqrt((x_3-x_1)^2+(y_3-y_1)^2)]^2 `
`=(x_2-x_1)^2 +(y_2-y_1)^2+(x_3-x_2)^2+(y_3-y_2)^2+(x_3-x_1)^2+(y_3-y_1)^2`
`=x_1^2x_2^2-2x_1^2+y_1^2+y_2^2-2y_1y_2+x_2^2+x_3^2-2x_2x_3+y_2^2+y_2^2+y_3^2-2y_2y_3+x_1^2+x_3^2-2x_1x_3+y_1^2+y_3^2-2y_1v_3`
`=2(x_1^2+x_2^2+x_3^2)+2(y_1^2+y_2^2+y_3^2)-(2x_1x_2+2x_2x_3+2x_3x_1)-(2y_1y_2+2y_2y_3+2y_3y_1)`
`=2(x_1^2+x_2^2+x_3^2)+2(y_1^2+y_2^2+y_3^2)+(x_1^2+x_2^2+x_3^2)+(y_1^2+y_2^2+y_3^2)`
`=3(x_1^2+x_2^2+x_3^2+y_1^2+y_2^2+y_3^2)`
`RHS =3(GA^2+GB^2+GC^2)`
`=[{sqrt((x_1-0)^2+(y_1-0)^2)}^2 +{sqrt((x_2-0)^2+(y_2-0)^2)}^2 +{sqrt((x_3-0)^2+(y_3-0)^2)}^2]`
`=3[x_1^2+x_2^2+x_3^2+y_1^2+y_2^2+y_3^2]`
Hence, `AB^2+BC^2+CA^2=3(GA^2+GB^2+GC^2)`
APPEARS IN
संबंधित प्रश्न
Find the ratio in which the point (2, y) divides the line segment joining the points A (-2,2) and B (3, 7). Also, find the value of y.
Prove that (4, 3), (6, 4) (5, 6) and (3, 5) are the angular points of a square.
In what ratio does the point (−4, 6) divide the line segment joining the points A(−6, 10) and B(3,−8)?
Show that the following points are the vertices of a square:
A (6,2), B(2,1), C(1,5) and D(5,6)
Points P, Q, and R in that order are dividing line segment joining A (1,6) and B(5, -2) in four equal parts. Find the coordinates of P, Q and R.
In what ratio is the line segment joining the points A(-2, -3) and B(3,7) divided by the yaxis? Also, find the coordinates of the point of division.
Find the ratio which the line segment joining the pints A(3, -3) and B(-2,7) is divided by x -axis Also, find the point of division.
If the point A(0,2) is equidistant from the points B(3,p) and C(p, 5), find p.
Find the coordinates of the points of trisection of the line segment joining the points (3, –2) and (–3, –4) ?
Two vertices of a triangle have coordinates (−8, 7) and (9, 4) . If the centroid of the triangle is at the origin, what are the coordinates of the third vertex?
If P (2, p) is the mid-point of the line segment joining the points A (6, −5) and B (−2, 11). find the value of p.
The line segment joining points (−3, −4), and (1, −2) is divided by y-axis in the ratio.
If the centroid of the triangle formed by the points (3, −5), (−7, 4), (10, −k) is at the point (k −1), then k =
The length of a line segment joining A (2, −3) and B is 10 units. If the abscissa of B is 10 units, then its ordinates can be
The line segment joining the points A(2, 1) and B (5, - 8) is trisected at the points P and Q such that P is nearer to A. If P also lies on the line given by 2x - y + k= 0 find the value of k.
Students of a school are standing in rows and columns in their playground for a drill practice. A, B, C and D are the positions of four students as shown in figure. Is it possible to place Jaspal in the drill in such a way that he is equidistant from each of the four students A, B, C and D? If so, what should be his position?
Signs of the abscissa and ordinate of a point in the second quadrant are respectively.
Abscissa of a point is positive in ______.
The distance of the point (–4, 3) from y-axis is ______.
Assertion (A): The point (0, 4) lies on y-axis.
Reason (R): The x-coordinate of a point on y-axis is zero.