Advertisements
Advertisements
प्रश्न
If G be the centroid of a triangle ABC and P be any other point in the plane, prove that PA2+ PB2 + PC2 = GA2 + GB2 + GC2 + 3GP2.
उत्तर
Let ΔABC be any triangle whose coordinates are`A(x_1,y_1):B(x_2,y_2):C(x_3,y_3)`. Let P be the origin and G be the centroid of the triangle.
We have to prove that,
`PA^2+PB^2+PC_2=GA^2+GB^2+GC^2+3GP^2`.......(1)
We know that the co-ordinates of the centroid G of a triangle whose vertices are
`(x_1,y_1), (x_2,y_2),(x_3,y_3)`is -
`G((x_1+x_2+x_3)/3,(y_1+y_2+y_3)/3)`
In genral, the distance between `A(x_1,y_1)`and `B(x_2,y_2)` is given by,
`AB=sqrt((x_2-x_1)^2+(y_2-y_1)^2`
So,
`PA^2=(x_1-0)^2+(y_1-0)^2`
`=x_1^2+y_1^2`
`PB^2=(x_2-0)^2+(y_2-0)^2`
`=x_2^2+y_2^2`
`PC^2=(x_3-0)^2 +(y_3-0)^2`
`=x_3^2+y_3^2`
NOW,
`GP^2=((x_1+x_2+x_3)/3-0)^2+((y_1+y_2+y_3)/3-0)^2`
`=((x_1+x_2+x_3)/9)^2 +((y_1+y_2+y_3)/9)^2`
`GA^2=(x_1(-x_1+x_2+x3)/3)^2 +(y_1-(y_1+y_2+y_3)/3)^2`
`((2x_1-x_2-x_3)/9)^2 +((2y^1-y_2-y_3)/9)^2`
`GB_2=(x^2-(x_1+x_2+x_3)/3)^2 + (y_2-(y_1+y_2+y_3)/3)^2`
`((2x_2-x_1-x_3)/9)^2 +((2y_2-y_1-y_3)/9)^2`
`GC^2=((x_3-x_1+x_2+x_3)/3)^2 +(y_3-(y_1+y_2+y_3)/3)^2`
`((2x_3-x_1-x_2)/9)^2 +((2y_3-y_1-y_-2)/9)^2`
So we get the value of left hand side of equation (1) as
`PA^2+PB^2+PC^2=x_1^2+x_2^2+x_3^2+y_1^2+y_2^2+y_3^2`
Similarly we get the value of right hand side of equation (1) as
`GA^2+GB^2+GC^2+3GP^2=[((2x_1-x_2-x_3)^2)/9] +[ (2x_2-x_2-x_3)^2/9+(2y_2-y_1-y_3)^2/9]`
`+[(2x_3-x_1-x_2)^2/9+(2y_3-x_1-x_2)^2/9]+3[(x_1+x_2+x_3)^2/9+(y_1+y_2+y_3)^2/9+(y_1+y_2+y_3)^2/9]`
`=[2/3(x_1^3+x_2^2+x_3^2)+1/3(x_1^2+x_2^2+x_3^2)] +[2/3(y_1^2+y_2^2+y_3^2)+1/3(y_1^2+y_2^2+y_3^2)]`
`=x_1^2+x_2^2+x_3^2+y_1^2+y_2^2+y_2^2`
Hence,
`PA^2+PB^2+PC^2=GB^2+GC^2+3GP^2`
APPEARS IN
संबंधित प्रश्न
Find the area of the triangle ABC with A(1, −4) and mid-points of sides through A being (2, −1) and (0, −1).
median of a triangle divides it into two triangles of equal areas. Verify this result for ΔABC whose vertices are A (4, - 6), B (3, - 2) and C (5, 2).
If the points P(-3, 9), Q(a, b) and R(4, -5) are collinear and a+b=1, find the value of a and b.
In Figure 1, PS = 3 cm, QS = 4 cm, ∠PRQ = θ, ∠PSQ = 90°, PQ ⊥ RQ and RQ = 9 cm. Evaluate tan θ.
Using integration, find the area of triangle ABC, whose vertices are A(2, 5), B(4, 7) and C(6, 2).
If the sides of a triangle are 3 cm, 4 cm and 5 cm, then the area is
The area of the triangle whose vertices are A(1, 2), B(-2, 3) and C(-3, -4) is ______.
Find the missing value:
Base | Height | Area of parallelogram |
______ | 8.4 cm | 48.72 cm2 |
The area of a triangle with vertices A, B, C is given by ______.
In the given figure, if PR = 12 cm, QR = 6 cm and PL = 8 cm, then QM is ______.