मराठी

Find the Ratio in Which the Point (-1, Y) Lying on the Line Segment Joining Points A(-3, 10) and (6, -8) Divides It. Also, Find the Value of Y. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the ratio in which the point (-1, y) lying on the line segment joining points A(-3, 10) and (6, -8) divides it. Also, find the value of y.

थोडक्यात उत्तर

उत्तर १

Let k be the ratio in which  P(-1,y ) divides the line segment joining the points

A(-3,10) and B (6,-8) 

Then , 

`(-1,y ) = ((k(6) -3)/(k+1) , (k(-8)+10)/(k+1) )`

`⇒(k(6) -3 )/(k+1) = -1 and y = (k(-8)+10)/(k+1)`

`⇒ k = 2/7`

`"Substituting " k=2/7 "in" y = (k(-8)+10)/(k+1) `, we get

`y =((-8xx2)/(7)+10)/(2/7 +1) = (-16+70)/9 = 6`

Hence, the required ratio is 2 : 7 and y=6

shaalaa.com

उत्तर २

Suppose P(−1, y) divides the line segment joining A(−3, 10) and B(6 −8) in the ratio k : 1.
Using section formula, we get
Coordinates of P = \[\left( \frac{6k - 3}{k + 1}, \frac{- 8k + 10}{k + 1} \right)\]

\[\therefore \left( \frac{6k - 3}{k + 1}, \frac{- 8k + 10}{k + 1} \right) = \left( - 1, y \right)\]

\[\Rightarrow \frac{6k - 3}{k + 1} = - 1\] and \[y = \frac{- 8k + 10}{k + 1}\]

Now,

\[\frac{6k - 3}{k + 1} = - 1\]
\[ \Rightarrow 6k - 3 = - k - 1\]
\[ \Rightarrow 7k = 2\]
\[ \Rightarrow k = \frac{2}{7}\]

So, P divides the line segment AB in the ratio 2 : 7.
Putting k = \[\frac{2}{7}\]  in  \[y = \frac{- 8k + 10}{k + 1}\] , we get

\[y = \frac{- 8 \times \frac{2}{7} + 10}{\frac{2}{7} + 1} = \frac{- 16 + 70}{2 + 7} = \frac{54}{9} = 6\]

Hence, the value of y is 6.

 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Co-Ordinate Geometry - Exercise 6.3 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 6 Co-Ordinate Geometry
Exercise 6.3 | Q 21 | पृष्ठ २९
आर एस अग्रवाल Mathematics [English] Class 10
पाठ 16 Coordinate Geomentry
Exercises 2 | Q 32

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find a point on the x-axis which is equidistant from the points (7, 6) and (−3, 4).


Show that the points A(5, 6), B(1, 5), C(2, 1) and D(6,2) are the vertices of a square.


Find the value of x such that PQ = QR where the coordinates of P, Q and R are (6, -1), (1, 3) and (x, 8) respectively.


Show that the following points are the vertices of a square:

(i) A (3,2), B(0,5), C(-3,2) and D(0,-1)


Show that the following points are the vertices of a square:

A (0,-2), B(3,1), C(0,4) and D(-3,1)


In what ratio does the line x - y - 2 = 0 divide the line segment joining the points A (3, 1) and B (8, 9)? 


Find the centroid of ΔABC  whose vertices are A(2,2) , B (-4,-4) and C (5,-8).


Find the possible pairs of coordinates of the fourth vertex D of the parallelogram, if three of its vertices are A(5, 6), B(1, –2) and C(3, –2).


Find the area of the quadrilateral ABCD, whose vertices are A(−3, −1), B (−2, −4), C(4, − 1) and D (3, 4).


The ordinate of any point on x-axis is


The abscissa of any point on y-axis is


 If (a,b) is the mid-point of the line segment joining the points A (10, - 6) , B (k,4) and a - 2b = 18 , find the value of k and the distance AB.

 
 
 

Write the coordinates of the point dividing line segment joining points (2, 3) and (3, 4) internally in the ratio 1 : 5.


The distance of the point (4, 7) from the y-axis is


If points A (5, pB (1, 5), C (2, 1) and D (6, 2) form a square ABCD, then p =


 In Fig. 14.46, the area of ΔABC (in square units) is


Find the coordinates of point A, where AB is a diameter of the circle with centre (–2, 2) and B is the point with coordinates (3, 4).


What are the coordinates of origin?


If the coordinates of the two points are P(–2, 3) and Q(–3, 5), then (abscissa of P) – (abscissa of Q) is ______.


Co-ordinates of origin are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×