मराठी

Show that the Following Points Are the Vertices of a Square: (I) a (3,2), B(0,5), C(-3,2) and D(0,-1) - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the following points are the vertices of a square:

(i) A (3,2), B(0,5), C(-3,2) and D(0,-1)

उत्तर

The given points are A (3,2), B(0,5), C(-3,2) and D(0,-1).

`AB = sqrt((0-3)^2 +(5-2)^2 ) = sqrt((-3)^2 +(3)^2 ) = sqrt(9+9) = sqrt(18) = 3 sqrt(2) units `

`BC= sqrt((-3-0)^2 + (2-5)^2) = sqrt((-3)^2 +(3)^2) = sqrt(9+9) = sqrt(18) = 3 sqrt(2) ` units

`CD = sqrt((0+3)^2 + (-1-2)^2) = sqrt((3)^2 +(-3)^2) = sqrt(9+9) = sqrt(18) = 3 sqrt(2)   units`

`DA = sqrt((0-3)^2 +(-1-2)^2) = sqrt((-3)^2+(-3)^2) = sqrt(9+9) =sqrt(18) = 3sqrt(2)   units`

Therefore`AB =BC=CD=DA=3 sqrt(2)     units`

Also, `AC = sqrt((-3-3)^2 +(2-2)^2) = sqrt((-6)^2 +(0)^2) = sqrt(36) = 6    units`

`BD = sqrt((0-0)^2 + (-1-5)^2) = sqrt((0)^2 +(-6)^2 )= sqrt(36) = 6     units`

Thus, diagonal AC = diagonal BD

Therefore, the given points from a square.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 16: Coordinate Geomentry - Exercises 1

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 16 Coordinate Geomentry
Exercises 1 | Q 26.1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Show that the points A(5, 6), B(1, 5), C(2, 1) and D(6,2) are the vertices of a square.


Three consecutive vertices of a parallelogram are (-2,-1), (1, 0) and (4, 3). Find the fourth vertex.


Prove that the points A(-4,-1), B(-2, 4), C(4, 0) and D(2, 3) are the vertices of a rectangle.


In what ratio does the point (−4, 6) divide the line segment joining the points A(−6, 10) and B(3,−8)?


If the poin A(0,2)  is equidistant form the points B (3, p) and  C (p ,5) find the value of p. Also, find the length of AB.


Find the ratio in which the point P(m, 6) divides the join of A(-4, 3) and B(2, 8) Also, find the value of m. 


Find the area of quadrilateral ABCD whose vertices are A(-5, 7), B(-4, -5) C(-1,-6) and D(4,5)


Find the coordinates of circumcentre and radius of circumcircle of ∆ABC if A(7, 1), B(3, 5) and C(2, 0) are given.


If `P(a/2,4)`is the mid-point of the line-segment joining the points A (−6, 5) and B(−2, 3), then the value of a is


The distance of the point P (4, 3) from the origin is


If the points P, Q(x, 7), R, S(6, y) in this order divide the line segment joining A(2, p) and B(7, 10) in 5 equal parts, find xy and p


Find the ratio in which the line segment joining the points A(3, −3) and B(−2, 7) is divided by the x-axis. Also, find the coordinates of the point of division.   


Points P, Q, R and S divides the line segment joining A(1, 2) and B(6, 7) in 5 equal parts. Find the coordinates of the points P, Q and R.   


If the point P (m, 3) lies on the line segment joining the points \[A\left( - \frac{2}{5}, 6 \right)\] and B (2, 8), find the value of m.

 
 

Write the condition of collinearity of points (x1, y1), (x2, y2) and (x3, y3).

 

If points (t, 2t), (−2, 6) and (3, 1) are collinear, then t =


What are the coordinates of origin?


Signs of the abscissa and ordinate of a point in the second quadrant are respectively.


The coordinates of two points are P(4, 5) and Q(–1, 6). Find the difference between their abscissas.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×