मराठी

Points P, Q, R and S divides the line segment joining A(1, 2) and B(6, 7) in 5 equal parts. Find the coordinates of the points P, Q and R. - Mathematics

Advertisements
Advertisements

प्रश्न

Points P, Q, R and S divides the line segment joining A(1, 2) and B(6, 7) in 5 equal parts. Find the coordinates of the points P, Q and R.   

थोडक्यात उत्तर

उत्तर

It is given that P, Q, R and S divides the line segment joining A(1, 2) and B(6, 7) in 5 equal parts.

∴ AP = PQ = QR = RS = SB          .....(1)
Now,
AP + PQ + QR + RS + SB = AB
⇒ AP + AP + AP + AP + AP = AB             [From (1)]
⇒ 5AP = AB
⇒ AP = \[\frac{1}{5}\] AB                  .....(2)   

Now,
PB = PQ + QR + RS + SB = \[\frac{1}{5}\] AB + \[\frac{1}{5}\] AB + \[\frac{1}{5}\] AB + \[\frac{1}{5}\] AB =  \[\frac{4}{5}\] AB         .....(3)

From (2) and (3), we get

AP : PB = \[\frac{1}{5}\] AB : \[\frac{4}{5}\] AB = 1 : 4 
Similarly,

AQ : QB = 2 : 3 and AR : RB = 3 : 2

Using section formula, we get

Coordinates of P = \[\left( \frac{1 \times 6 + 4 \times 1}{1 + 4}, \frac{1 \times 7 + 4 \times 2}{1 + 4} \right) = \left( \frac{10}{5}, \frac{15}{5} \right) = \left( 2, 3 \right)\]

Coordinates of Q = \[\left( \frac{2 \times 6 + 3 \times 1}{2 + 3}, \frac{2 \times 7 + 3 \times 2}{2 + 3} \right) = \left( \frac{15}{5}, \frac{20}{5} \right) = \left( 3, 4 \right)\]

Coordinates of R = \[\left( \frac{3 \times 6 + 2 \times 1}{3 + 2}, \frac{3 \times 7 + 2 \times 2}{3 + 2} \right) = \left( \frac{20}{5}, \frac{25}{5} \right) = \left( 4, 5 \right)\]

 
 
 
 
 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Co-Ordinate Geometry - Exercise 6.3 [पृष्ठ ३०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 6 Co-Ordinate Geometry
Exercise 6.3 | Q 38 | पृष्ठ ३०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the distance between the following pair of points:

(a, 0) and (0, b)


If (−2, 3), (4, −3) and (4, 5) are the mid-points of the sides of a triangle, find the coordinates of its centroid.


Find a point on y-axis which is equidistant from the points (5, -2) and (-3, 2).


Show that the following points are the vertices of a square:

A (6,2), B(2,1), C(1,5) and D(5,6)


A point whose abscissa and ordinate are 2 and −5 respectively, lies in


Points (−4, 0) and (7, 0) lie


The points  \[A \left( x_1 , y_1 \right) , B\left( x_2 , y_2 \right) , C\left( x_3 , y_3 \right)\]   are the vertices of  ΔABC .
(i) The median from meets BC at D . Find the coordinates of the point  D.
(ii) Find the coordinates of the point on AD such that AP : PD  = 2 : 1.
(iii) Find the points of coordinates Q and on medians BE and CF respectively such thatBQ : QE = 2 : 1 and CR : RF = 2 : 1.
(iv) What are the coordinates of the centropid of the triangle ABC 

 
 

If  \[D\left( - \frac{1}{5}, \frac{5}{2} \right), E(7, 3) \text{ and }  F\left( \frac{7}{2}, \frac{7}{2} \right)\]  are the mid-points of sides of  \[∆ ABC\] ,  find the area of  \[∆ ABC\] .


If the centroid of the triangle formed by points P (a, b), Q(b, c) and R (c, a) is at the origin, what is the value of a + b + c?


If the mid-point of the segment joining A (xy + 1) and B (x + 1, y + 2) is C \[\left( \frac{3}{2}, \frac{5}{2} \right)\] , find xy.

 

 
 

Find the values of x for which the distance between the point P(2, −3), and Q (x, 5) is 10.

 

Find the area of triangle with vertices ( ab+c) , (bc+a) and (ca+b).

 

The distance between the points (cos θ, 0) and (sin θ − cos θ) is


If the points (k, 2k), (3k, 3k) and (3, 1) are collinear, then k


If the points P (xy) is equidistant from A (5, 1) and B (−1, 5), then


The ratio in which the line segment joining points A (a1b1) and B (a2b2) is divided by y-axis is


 In Fig. 14.46, the area of ΔABC (in square units) is


Find the point on the y-axis which is equidistant from the points (S, - 2) and (- 3, 2).


Write the equations of the x-axis and y-axis. 


Co-ordinates of origin are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×