हिंदी

Show that the Following Points Are the Vertices of a Square: (I) a (3,2), B(0,5), C(-3,2) and D(0,-1) - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the following points are the vertices of a square:

(i) A (3,2), B(0,5), C(-3,2) and D(0,-1)

उत्तर

The given points are A (3,2), B(0,5), C(-3,2) and D(0,-1).

`AB = sqrt((0-3)^2 +(5-2)^2 ) = sqrt((-3)^2 +(3)^2 ) = sqrt(9+9) = sqrt(18) = 3 sqrt(2) units `

`BC= sqrt((-3-0)^2 + (2-5)^2) = sqrt((-3)^2 +(3)^2) = sqrt(9+9) = sqrt(18) = 3 sqrt(2) ` units

`CD = sqrt((0+3)^2 + (-1-2)^2) = sqrt((3)^2 +(-3)^2) = sqrt(9+9) = sqrt(18) = 3 sqrt(2)   units`

`DA = sqrt((0-3)^2 +(-1-2)^2) = sqrt((-3)^2+(-3)^2) = sqrt(9+9) =sqrt(18) = 3sqrt(2)   units`

Therefore`AB =BC=CD=DA=3 sqrt(2)     units`

Also, `AC = sqrt((-3-3)^2 +(2-2)^2) = sqrt((-6)^2 +(0)^2) = sqrt(36) = 6    units`

`BD = sqrt((0-0)^2 + (-1-5)^2) = sqrt((0)^2 +(-6)^2 )= sqrt(36) = 6     units`

Thus, diagonal AC = diagonal BD

Therefore, the given points from a square.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 16: Coordinate Geomentry - Exercises 1

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 16 Coordinate Geomentry
Exercises 1 | Q 26.1

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If the vertices of ΔABC  be A(1, -3) B(4, p) and C(-9, 7) and its area is 15 square units, find the values of p


Points A(-1, y) and B(5,7) lie on the circle with centre O(2, -3y).Find the value of y.


The ordinate of any point on x-axis is


The perpendicular distance of the point P (4, 3) from x-axis is


If A(3, y) is equidistant from points P(8, −3) and Q(7, 6), find the value of y and find the distance AQ. 


If the point  \[C \left( - 1, 2 \right)\] divides internally the line segment joining the points  A (2, 5)  and Bx) in the ratio 3 : 4 , find the value of x2 + y2 .

 

 ABCD is a parallelogram with vertices  \[A ( x_1 , y_1 ), B \left( x_2 , y_2 \right), C ( x_3 , y_3 )\]   . Find the coordinates  of the fourth vertex D in terms of  \[x_1 , x_2 , x_3 , y_1 , y_2 \text{ and }  y_3\]

   

In  \[∆\] ABC , the coordinates of vertex A are (0, - 1) and D (1,0) and E(0,10)  respectively the mid-points of the sides AB and AC . If F is the mid-points of the side BC , find the area of \[∆\] DEF.


If three points (x1, y1) (x2, y2), (x3, y3) lie on the same line, prove that  \[\frac{y_2 - y_3}{x_2 x_3} + \frac{y_3 - y_1}{x_3 x_1} + \frac{y_1 - y_2}{x_1 x_2} = 0\]

 


\[A\left( 6, 1 \right) , B(8, 2) \text{ and }  C(9, 4)\] are three vertices of a parallelogram ABCD . If E is the mid-point  of DC , find the area of  \[∆\] ADE.

 

Write the formula for the area of the triangle having its vertices at (x1, y1), (x2, y2) and (x3, y3).


If the centroid of a triangle is (1, 4) and two of its vertices are (4, −3) and (−9, 7), then the area of the triangle is


The ratio in which the line segment joining points A (a1b1) and B (a2b2) is divided by y-axis is


The distance of the point P(2, 3) from the x-axis is ______.


If y-coordinate of a point is zero, then this point always lies ______.


If the perpendicular distance of a point P from the x-axis is 5 units and the foot of the perpendicular lies on the negative direction of x-axis, then the point P has ______.


Abscissa of a point is positive in ______.


Point (3, 0) lies in the first quadrant.


In which ratio the y-axis divides the line segment joining the points (5, – 6) and (–1, – 4)?


The distance of the point (–6, 8) from x-axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×