Advertisements
Advertisements
प्रश्न
If the points P, Q(x, 7), R, S(6, y) in this order divide the line segment joining A(2, p) and B(7, 10) in 5 equal parts, find x, y and p.
उत्तर
It is given that P, Q(x, 7), R, S(6, y) divides the line segment joining A(2, p) and B(7, 10) in 5 equal parts.
∴ AP = PQ = QR = RS = SB .....(1)
Now,
AP + PQ + QR + RS + SB = AB
⇒ SB + SB + SB + SB + SB = AB [From (1)]
⇒ 5SB = AB
⇒ SB = \[\frac{1}{5}\] AB .....(2)
Now,
AS = AP + PQ + QR + RS = \[\frac{1}{5}\] AB + \[\frac{1}{5}\] AB + \[\frac{1}{5}\] AB + \[\frac{1}{5}\] AB = \[\frac{4}{5}\] AB .....(3)
From (2) and (3), we get
AS : SB = \[\frac{4}{5}\] AB : \[\frac{1}{5}\] AB = 4 : 1
Similarly,
AQ : QB = 2 : 3
Using section formula, we get
Coordinates of Q =
\[ \Rightarrow 20 + 3p = 35\]
\[ \Rightarrow 3p = 15\]
\[ \Rightarrow p = 5\]
Thus, the values of x, y and p are 4, 9 and 5, respectively.
APPEARS IN
संबंधित प्रश्न
If the points A(k + 1, 2k), B(3k, 2k + 3) and C(5k − 1, 5k) are collinear, then find the value of k
If A(–2, 1), B(a, 0), C(4, b) and D(1, 2) are the vertices of a parallelogram ABCD, find the values of a and b. Hence find the lengths of its sides
If G be the centroid of a triangle ABC, prove that:
AB2 + BC2 + CA2 = 3 (GA2 + GB2 + GC2)
If (−2, 3), (4, −3) and (4, 5) are the mid-points of the sides of a triangle, find the coordinates of its centroid.
If three consecutive vertices of a parallelogram are (1, -2), (3, 6) and (5, 10), find its fourth vertex.
If the points A (a, -11), B (5, b), C (2, 15) and D (1, 1) are the vertices of a parallelogram ABCD, find the values of a and b.
If the poin A(0,2) is equidistant form the points B (3, p) and C (p ,5) find the value of p. Also, find the length of AB.
In what ratio does the point P(2,5) divide the join of A (8,2) and B(-6, 9)?
In what ratio is the line segment joining A(2, -3) and B(5, 6) divide by the x-axis? Also, find the coordinates of the pint of division.
The midpoint P of the line segment joining points A(-10, 4) and B(-2, 0) lies on the line segment joining the points C(-9, -4) and D(-4, y). Find the ratio in which P divides CD. Also, find the value of y.
ABCD is a rectangle whose three vertices are A(4,0), C(4,3) and D(0,3). Find the length of one its diagonal.
The abscissa of a point is positive in the
If (x, y) be on the line joining the two points (1, −3) and (−4, 2) , prove that x + y + 2= 0.
If the distance between points (x, 0) and (0, 3) is 5, what are the values of x?
Find the area of triangle with vertices ( a, b+c) , (b, c+a) and (c, a+b).
If (x , 2), (−3, −4) and (7, −5) are collinear, then x =
If Points (1, 2) (−5, 6) and (a, −2) are collinear, then a =
If A(x, 2), B(−3, −4) and C(7, −5) are collinear, then the value of x is
Find the point on the y-axis which is equidistant from the points (5, −2) and (−3, 2).
Statement A (Assertion): If the coordinates of the mid-points of the sides AB and AC of ∆ABC are D(3, 5) and E(–3, –3) respectively, then BC = 20 units.
Statement R (Reason): The line joining the mid-points of two sides of a triangle is parallel to the third side and equal to half of it.