Advertisements
Advertisements
प्रश्न
If A(–2, 1), B(a, 0), C(4, b) and D(1, 2) are the vertices of a parallelogram ABCD, find the values of a and b. Hence find the lengths of its sides
उत्तर
We know that diagonals of a parallelogram bisect each other.
Coordinates of the midpoint of AC = coordinates of the midpoint of BD
the midpoint of AC = midpoint of BD
`=> ((4-2)/2, (b+1)/2) = ((a+1)/2 , (0 +2)/2)`
`=> (2/2, (b+1)/2) = ((a+1)/2 , 2/2)`
`=> (1, (b+1)/2) = ((a+1)/2 , 1)`
So
`1 = (a+1)/2``
2 = a + 1
`:. a = 1`
and
`(b +1)/2 = 1`
`=> b + 1 = 2`
`:. b = 1`
Therefore, the coordinates are A(–2, 1), B(1, 0), C(4, 1) and D(1, 2).
`AB = DC = sqrt((1+2)^2 + (0 - 1)^2) = sqrt(9 + 1) = sqrt(10)`
`AD = BC = sqrt((1+2)^2 + (2-1)^2) = sqrt(9 + 1) = sqrt10`
APPEARS IN
संबंधित प्रश्न
On which axis do the following points lie?
R(−4,0)
Let ABCD be a square of side 2a. Find the coordinates of the vertices of this square when The centre of the square is at the origin and coordinate axes are parallel to the sides AB and AD respectively.
Which point on the x-axis is equidistant from (5, 9) and (−4, 6)?
The line segment joining the points P(3, 3) and Q(6, -6) is trisected at the points A and B such that Ais nearer to P. If A also lies on the line given by 2x + y + k = 0, find the value of k.
Show that the following points are the vertices of a square:
A (0,-2), B(3,1), C(0,4) and D(-3,1)
The co-ordinates of point A and B are 4 and -8 respectively. Find d(A, B).
Points (−4, 0) and (7, 0) lie
If the vertices of a triangle are (1, −3), (4, p) and (−9, 7) and its area is 15 sq. units, find the value(s) of p.
Find the value of k if points A(k, 3), B(6, −2) and C(−3, 4) are collinear.
If R (x, y) is a point on the line segment joining the points P (a, b) and Q (b, a), then prove that x + y = a + b.
Write the perimeter of the triangle formed by the points O (0, 0), A (a, 0) and B (0, b).
What is the distance between the points (5 sin 60°, 0) and (0, 5 sin 30°)?
If the centroid of the triangle formed by the points (a, b), (b, c) and (c, a) is at the origin, then a3 + b3 + c3 =
If the perpendicular distance of a point P from the x-axis is 5 units and the foot of the perpendicular lies on the negative direction of x-axis, then the point P has ______.
If the coordinates of the two points are P(–2, 3) and Q(–3, 5), then (abscissa of P) – (abscissa of Q) is ______.
The perpendicular distance of the point P(3, 4) from the y-axis is ______.
Points (1, –1) and (–1, 1) lie in the same quadrant.
(–1, 7) is a point in the II quadrant.
Co-ordinates of origin are ______.