मराठी

If the Vertices of a Triangle Are (1, −3), (4, P) and (−9, 7) and Its Area is 15 Sq. Units, Find the Value(S) of P. - Mathematics

Advertisements
Advertisements

प्रश्न

If the vertices of a triangle are (1, −3), (4, p) and (−9, 7) and its area is 15 sq. units, find the value(s) of p.     

थोडक्यात उत्तर

उत्तर

Let A(1, −3), B(4, p) and C(−9, 7) be the vertices of the ∆ABC.
Here, x1 = 1, y1 = −3; x2 = 4, y2 = and x3 = −9, y3 = 7
ar(∆ABC) = 15 square units

\[\Rightarrow \frac{1}{2}\left| x_1 \left( y_2 - y_3 \right) + x_2 \left( y_3 - y_1 \right) + x_3 \left( y_1 - y_2 \right) \right| = 15\]

\[ \Rightarrow \frac{1}{2}\left| 1\left( p - 7 \right) + 4\left[ 7 - \left( - 3 \right) \right] + \left( - 9 \right)\left( - 3 - p \right) \right| = 15\]

\[ \Rightarrow \frac{1}{2}\left| p - 7 + 40 + 27 + 9p \right| = 15\]

\[ \Rightarrow \left| 10p + 60 \right| = 30\]

\[\Rightarrow 10p + 60 = 30\] or  \[10p + 60 = - 30\]

\[\Rightarrow 10p = - 30\]  or  \[10p = - 90\]

\[\Rightarrow p = - 3\]  or \[p = - 9\]

Hence, the value of is −3 or −9.

 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Co-Ordinate Geometry - Exercise 6.5 [पृष्ठ ५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 6 Co-Ordinate Geometry
Exercise 6.5 | Q 13 | पृष्ठ ५४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Let ABCD be a square of side 2a. Find the coordinates of the vertices of this square when The centre of the square is at the origin and coordinate axes are parallel to the sides AB and AD respectively.


Find the point on x-axis which is equidistant from the points (−2, 5) and (2,−3).


Find the points of trisection of the line segment joining the points:

(2, -2) and (-7, 4).


Prove that the points A(-4,-1), B(-2, 4), C(4, 0) and D(2, 3) are the vertices of a rectangle.


Show hat A(1,2), B(4,3),C(6,6) and D(3,5) are the vertices of a parallelogram. Show that ABCD is not rectangle.


In what ratio is the line segment joining A(2, -3) and B(5, 6) divide by the x-axis? Also, find the coordinates of the pint of division.


Find the area of the triangle formed by joining the midpoints of the sides of the triangle whose vertices are A(2,1) B(4,3) and C(2,5)


If the point C(k,4) divides the join of A(2,6) and B(5,1) in the ratio 2:3 then find the value of k. 


Find the coordinates of the points of trisection of the line segment joining the points (3, –2) and (–3, –4) ?


Two points having same abscissae but different ordinate lie on


Points P, Q, R and S divides the line segment joining A(1, 2) and B(6, 7) in 5 equal parts. Find the coordinates of the points P, Q and R.   


The points  \[A \left( x_1 , y_1 \right) , B\left( x_2 , y_2 \right) , C\left( x_3 , y_3 \right)\]   are the vertices of  ΔABC .
(i) The median from meets BC at D . Find the coordinates of the point  D.
(ii) Find the coordinates of the point on AD such that AP : PD  = 2 : 1.
(iii) Find the points of coordinates Q and on medians BE and CF respectively such thatBQ : QE = 2 : 1 and CR : RF = 2 : 1.
(iv) What are the coordinates of the centropid of the triangle ABC 

 
 

Write the coordinates the reflections of points (3, 5) in X and Y -axes.

 

Write the condition of collinearity of points (x1, y1), (x2, y2) and (x3, y3).

 

If P (2, p) is the mid-point of the line segment joining the points A (6, −5) and B (−2, 11). find the value of p.


If the distance between the points (4, p) and (1, 0) is 5, then p = 


What is the nature of the line which includes the points (-5, 5), (6, 5), (-3, 5), (0, 5)?


Find the coordinates of the point of intersection of the graph of the equation x = 2 and y = – 3


The coordinates of the point where the line 2y = 4x + 5 crosses x-axis is ______.


The distance of the point (–1, 7) from x-axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×