English

Find the Ratio in Which the Point (-1, Y) Lying on the Line Segment Joining Points A(-3, 10) and (6, -8) Divides It. Also, Find the Value of Y. - Mathematics

Advertisements
Advertisements

Question

Find the ratio in which the point (-1, y) lying on the line segment joining points A(-3, 10) and (6, -8) divides it. Also, find the value of y.

Answer in Brief

Solution 1

Let k be the ratio in which  P(-1,y ) divides the line segment joining the points

A(-3,10) and B (6,-8) 

Then , 

`(-1,y ) = ((k(6) -3)/(k+1) , (k(-8)+10)/(k+1) )`

`⇒(k(6) -3 )/(k+1) = -1 and y = (k(-8)+10)/(k+1)`

`⇒ k = 2/7`

`"Substituting " k=2/7 "in" y = (k(-8)+10)/(k+1) `, we get

`y =((-8xx2)/(7)+10)/(2/7 +1) = (-16+70)/9 = 6`

Hence, the required ratio is 2 : 7 and y=6

shaalaa.com

Solution 2

Suppose P(−1, y) divides the line segment joining A(−3, 10) and B(6 −8) in the ratio k : 1.
Using section formula, we get
Coordinates of P = \[\left( \frac{6k - 3}{k + 1}, \frac{- 8k + 10}{k + 1} \right)\]

\[\therefore \left( \frac{6k - 3}{k + 1}, \frac{- 8k + 10}{k + 1} \right) = \left( - 1, y \right)\]

\[\Rightarrow \frac{6k - 3}{k + 1} = - 1\] and \[y = \frac{- 8k + 10}{k + 1}\]

Now,

\[\frac{6k - 3}{k + 1} = - 1\]
\[ \Rightarrow 6k - 3 = - k - 1\]
\[ \Rightarrow 7k = 2\]
\[ \Rightarrow k = \frac{2}{7}\]

So, P divides the line segment AB in the ratio 2 : 7.
Putting k = \[\frac{2}{7}\]  in  \[y = \frac{- 8k + 10}{k + 1}\] , we get

\[y = \frac{- 8 \times \frac{2}{7} + 10}{\frac{2}{7} + 1} = \frac{- 16 + 70}{2 + 7} = \frac{54}{9} = 6\]

Hence, the value of y is 6.

 

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Co-Ordinate Geometry - Exercise 6.3 [Page 29]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 6 Co-Ordinate Geometry
Exercise 6.3 | Q 21 | Page 29
RS Aggarwal Mathematics [English] Class 10
Chapter 16 Coordinate Geomentry
Exercises 2 | Q 32

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

If the points A(k + 1, 2k), B(3k, 2k + 3) and C(5k − 1, 5k) are collinear, then find the value of k


Let ABCD be a square of side 2a. Find the coordinates of the vertices of this square when A coincides with the origin and AB and AD are along OX and OY respectively.


Show that the points (−3, 2), (−5,−5), (2, −3) and (4, 4) are the vertices of a rhombus. Find the area of this rhombus.


Show that the points A(5, 6), B(1, 5), C(2, 1) and D(6,2) are the vertices of a square.


Show that the points A(6,1), B(8,2), C(9,4) and D(7,3) are the vertices of a rhombus. Find its area.


Show hat A(1,2), B(4,3),C(6,6) and D(3,5) are the vertices of a parallelogram. Show that ABCD is not rectangle.


The line segment joining A( 2,9) and B(6,3)  is a diameter of a circle with center C. Find the coordinates of C


If the point `P (1/2,y)` lies on the line segment joining the points A(3, -5) and B(-7, 9) then find the ratio in which P divides AB. Also, find the value of y.


The base BC of an equilateral triangle ABC lies on y-axis. The coordinates of point C are (0, -3). The origin is the midpoint of the base. Find the coordinates of the points A and B. Also, find the coordinates of another point D such that ABCD is a rhombus.


Point P(x, 4) lies on the line segment joining the points A(−5, 8) and B(4, −10). Find the ratio in which point P divides the line segment AB. Also find the value of x.


If P ( 9a -2  , - b) divides the line segment joining A (3a + 1 , - 3 ) and B (8a, 5) in the ratio 3 : 1 , find the values of a and b .

 
 
 

Find the value of a so that the point (3, a) lies on the line represented by 2x − 3y + 5 = 0


If A (1, 2) B (4, 3) and C (6, 6) are the three vertices of a parallelogram ABCD, find the coordinates of fourth vertex D.

 

The perimeter of the triangle formed by the points (0, 0), (0, 1) and (0, 1) is 


If A (2, 2), B (−4, −4) and C (5, −8) are the vertices of a triangle, than the length of the median through vertex C is


The area of the triangle formed by (ab + c), (bc + a) and (ca + b)


If the points P (xy) is equidistant from A (5, 1) and B (−1, 5), then


The coordinates of the circumcentre of the triangle formed by the points O (0, 0), A (a, 0 and B (0, b) are


If (−2, 1) is the centroid of the triangle having its vertices at (x , 0) (5, −2),  (−8, y), then xy satisfy the relation


If A(x, 2), B(−3, −4) and C(7, −5) are collinear, then the value of x is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×