Advertisements
Advertisements
Question
Show that the points A(6,1), B(8,2), C(9,4) and D(7,3) are the vertices of a rhombus. Find its area.
Solution
The given points are A(6,1), B(8,2), C(9,4) and D(7,3) .
`AB = sqrt ((6-8)^2 +(1-2)^2) = sqrt((-2)^2 +(-1)^2)`
`= sqrt(4+1) = sqrt(5) `
`BC = sqrt((8-9)^2 +(2-4)^2) = sqrt((-1)^2+(-2)^2)`
`= sqrt(1+4) = sqrt(5)`
`CD= sqrt((9-7) ^2 + (4-3)^2) = sqrt((2)^2 +(1)^2)`
`= sqrt(4+1) = sqrt(5)`
`AD = sqrt((7-6)^2 +(3-1)^2 ) = sqrt((1)^2 +(2)^2)`
`=sqrt (1+4) = sqrt(5)`
`AC = sqrt((6-9)^2 +(1-4)^2) = sqrt((-3)^2+(-3)^2)`
`= sqrt(9+9) = 3 sqrt(2)`
`=BD = sqrt(( 8-7)^2 +(2-3)^2) = sqrt((1)^2 +(-1)^2)`
`= sqrt(1+1) = sqrt(2)`
`∵ AB =BC = CD=AD = sqrt(5) and AC ≠ BD`
Therefore, the given points are the vertices of a rhombus. Now
Area` ( ΔABCD ) = 1/2 xx AC xx BD`
` = 1/2 xx 3 sqrt(2) xx sqrt(2) = 3 ` sq. units
Hence, the area of the rhombus is 3 sq. units
APPEARS IN
RELATED QUESTIONS
If A(–2, 1), B(a, 0), C(4, b) and D(1, 2) are the vertices of a parallelogram ABCD, find the values of a and b. Hence find the lengths of its sides
Which point on the y-axis is equidistant from (2, 3) and (−4, 1)?
If A and B are (1, 4) and (5, 2) respectively, find the coordinates of P when AP/BP = 3/4.
Show that the following points are the vertices of a square:
(i) A (3,2), B(0,5), C(-3,2) and D(0,-1)
Find the point on x-axis which is equidistant from points A(-1,0) and B(5,0)
In what ratio does the point C (4,5) divides the join of A (2,3) and B (7,8) ?
Find the ratio in which the point (−3, k) divides the line-segment joining the points (−5, −4) and (−2, 3). Also find the value of k ?
Show that the points (−2, 3), (8, 3) and (6, 7) are the vertices of a right triangle ?
Point P(x, 4) lies on the line segment joining the points A(−5, 8) and B(4, −10). Find the ratio in which point P divides the line segment AB. Also find the value of x.
Show that A(-4, -7), B(-1, 2), C(8, 5) and D(5, -4) are the vertices of a
rhombus ABCD.
The abscissa of a point is positive in the
If the vertices of a triangle are (1, −3), (4, p) and (−9, 7) and its area is 15 sq. units, find the value(s) of p.
Find the value of k if points A(k, 3), B(6, −2) and C(−3, 4) are collinear.
The area of the triangle formed by (a, b + c), (b, c + a) and (c, a + b)
The line segment joining the points (3, -1) and (-6, 5) is trisected. The coordinates of point of trisection are ______.
The line 3x + y – 9 = 0 divides the line joining the points (1, 3) and (2, 7) internally in the ratio ______.
Point P(– 4, 2) lies on the line segment joining the points A(– 4, 6) and B(– 4, – 6).
The points (–5, 2) and (2, –5) lie in the ______.
The perpendicular distance of the point P(3, 4) from the y-axis is ______.
In which ratio the y-axis divides the line segment joining the points (5, – 6) and (–1, – 4)?