Advertisements
Advertisements
Question
If A (1, 2) B (4, 3) and C (6, 6) are the three vertices of a parallelogram ABCD, find the coordinates of fourth vertex D.
Solution
Let ABCD be a parallelogram in which the co-ordinates of the vertices are A (1, 2);
B (4, 3) and C (6, 6). We have to find the co-ordinates of the forth vertex.
Let the forth vertex be D ( x , y)
Since ABCD is a parallelogram, the diagonals bisect each other. Therefore the mid-point of the diagonals of the parallelogram will coincide.
Now to find the mid-point P ( x , y) of two points `A( x_1 , y_2) " and " B ( x_2 , y_2)` we use section formula as,
`P(x , y) = ((x_1 + x_2)/2 , (y_1 + y_2)/ 2)`
The mid-point of the diagonals of the parallelogram will coincide.
So,
Co - ordinate of mid - point of AC = Co -ordinate of mid -point of BD
Therefore,
`((1+6)/2 , (2+6)/2) = ((x + 4)/2 , ( y + 3)/2)`
`((x+4)/2 , (y + 3)/2 ) = (7/2, 4)`
Now equate the individual terms to get the unknown value. So,
`(x+4)/2 = 7/2`
x = 3
Similarly,
`(y + 3)/2 = 4`
y = 5
So the forth vertex is D ( 3 , 5) .
APPEARS IN
RELATED QUESTIONS
Which point on the y-axis is equidistant from (2, 3) and (−4, 1)?
In Fig. 14.36, a right triangle BOA is given C is the mid-point of the hypotenuse AB. Show that it is equidistant from the vertices O, A and B.
We have a right angled triangle,`triangle BOA` right angled at O. Co-ordinates are B (0,2b); A (2a, 0) and C (0, 0).
Show that the following points are the vertices of a square:
A (6,2), B(2,1), C(1,5) and D(5,6)
Find the ratio which the line segment joining the pints A(3, -3) and B(-2,7) is divided by x -axis Also, find the point of division.
Find the area of the quadrilateral ABCD, whose vertices are A(−3, −1), B (−2, −4), C(4, − 1) and D (3, 4).
If (x, y) be on the line joining the two points (1, −3) and (−4, 2) , prove that x + y + 2= 0.
If the points A(−2, 1), B(a, b) and C(4, −1) ae collinear and a − b = 1, find the values of aand b.
If the points A(−2, 1), B(a, b) and C(4, −1) ae collinear and a − b = 1, find the values of aand b.
What is the distance between the points (5 sin 60°, 0) and (0, 5 sin 30°)?
If the points A (1,2) , O (0,0) and C (a,b) are collinear , then find a : b.
If A (5, 3), B (11, −5) and P (12, y) are the vertices of a right triangle right angled at P, then y=
The ratio in which the x-axis divides the segment joining (3, 6) and (12, −3) is
The point R divides the line segment AB, where A(−4, 0) and B(0, 6) such that AR=34AB.">AR = `3/4`AB. Find the coordinates of R.
The distance of the point P(2, 3) from the x-axis is ______.
Abscissa of all the points on the x-axis is ______.
Ordinate of all points on the x-axis is ______.
If y-coordinate of a point is zero, then this point always lies ______.
The distance of the point (–6, 8) from x-axis is ______.
Assertion (A): Mid-point of a line segment divides the line segment in the ratio 1 : 1
Reason (R): The ratio in which the point (−3, k) divides the line segment joining the points (− 5, 4) and (− 2, 3) is 1 : 2.