मराठी

Find the Coordinates of the Point Which Divides the Line Segment Joining (−1,3) and (4, −7) Internally in the Ratio 3 : 4 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the coordinates of the point which divides the line segment joining (−1,3) and (4, −7) internally in the ratio 3 : 4

उत्तर

We have A (−1, 3) and B (4,−7) be two points. Let a point P(x, y) divide the line segment joining the points A and B in the ratio 3:4 internally.

Now according to the section formula if point a point P divides a line segment joining `A(x_1, y_1)` and B`(x_2, y_2)` in the ratio m: n internally than,

P(x,y) = ((nx_1 + mx_2)/(m+n), (ny_1 + my_2)/(m+n))

`= (8/7,-9/7)`

Therefore, co-ordinates of point P is `(8/7,-9/7)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Co-Ordinate Geometry - Exercise 6.3 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 6 Co-Ordinate Geometry
Exercise 6.3 | Q 1 | पृष्ठ २८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If the points A(k + 1, 2k), B(3k, 2k + 3) and C(5k − 1, 5k) are collinear, then find the value of k


If A(–2, 1), B(a, 0), C(4, b) and D(1, 2) are the vertices of a parallelogram ABCD, find the values of a and b. Hence find the lengths of its sides


Three consecutive vertices of a parallelogram are (-2,-1), (1, 0) and (4, 3). Find the fourth vertex.


The points (3, -4) and (-6, 2) are the extremities of a diagonal of a parallelogram. If the third vertex is (-1, -3). Find the coordinates of the fourth vertex.


In what ratio does the line x - y - 2 = 0 divide the line segment joining the points A (3, 1) and B (8, 9)? 


Find the ratio in which the point (-1, y) lying on the line segment joining points A(-3, 10) and (6, -8) divides it. Also, find the value of y.


Find the area of the triangle formed by joining the midpoints of the sides of the triangle whose vertices are A(2,1) B(4,3) and C(2,5)


Find the coordinates of the centre of the circle passing through the points P(6, –6), Q(3, –7) and R (3, 3).


Show that A(-4, -7), B(-1, 2), C(8, 5) and D(5, -4) are the vertices of a
rhombus ABCD.


The measure of the angle between the coordinate axes is


Find the value of k if points A(k, 3), B(6, −2) and C(−3, 4) are collinear.

 

\[A\left( 6, 1 \right) , B(8, 2) \text{ and }  C(9, 4)\] are three vertices of a parallelogram ABCD . If E is the mid-point  of DC , find the area of  \[∆\] ADE.

 

Find the values of x for which the distance between the point P(2, −3), and Q (x, 5) is 10.

 

What is the distance between the points  \[A\left( \sin\theta - \cos\theta, 0 \right)\] and \[B\left( 0, \sin\theta + \cos\theta \right)\] ?

 
 

The perimeter of the triangle formed by the points (0, 0), (0, 1) and (0, 1) is 


If Points (1, 2) (−5, 6) and (a, −2) are collinear, then a =


If the points P (xy) is equidistant from A (5, 1) and B (−1, 5), then


Find the coordinates of point A, where AB is a diameter of the circle with centre (–2, 2) and B is the point with coordinates (3, 4).


If y-coordinate of a point is zero, then this point always lies ______.


The distance of the point (–1, 7) from x-axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×