Advertisements
Advertisements
प्रश्न
Determine the ratio in which the point (-6, a) divides the join of A (-3, 1) and B (-8, 9). Also, find the value of a.
उत्तर
The co-ordinates of a point which divided two points `(x_1,y_1)` and `(x_2,y_2)`internally in the ratio m:n is given by the formula,
`(x,y) = (((mx_2 + nx_1)/(m + n))"," ((my_2 + ny_1)/(m + n)))`
Let us substitute these values in the earlier mentioned formula.
`(-6, a) = (((m(-8) +n(-3))/(m + n))","((m(9) +n(1))/(m + n)))`
Equating the individual components we have
`-6 = (m(-8) + n(-3))/(m + n)`
`-6m - 6n = -8m - 3n`
2m = 3n
`m/n = 3/2`
We see that the ratio in which the given point divides the line segment is 3:2
Let us now use this ratio to find out the value of 'a'.
`(-6,a) = (((m(-8) + n(-3))/(m - n))","((m(9) + n(1))/(m + n)))`
`(-6, a) = (((3(-8) + 2(-3))/(3 + 2))"," ((3(9) + 2(1))/(3 + 2)))`
Equating the individual components we have
`a = (3(9) + 2(1))/(3 + 2)`
`a= 29/5`
Thus the vlaue of a is 29/5
APPEARS IN
संबंधित प्रश्न
If the points A(k + 1, 2k), B(3k, 2k + 3) and C(5k − 1, 5k) are collinear, then find the value of k
If A(–2, 1), B(a, 0), C(4, b) and D(1, 2) are the vertices of a parallelogram ABCD, find the values of a and b. Hence find the lengths of its sides
Prove that the points (0, 0), (5, 5) and (-5, 5) are the vertices of a right isosceles triangle.
In what ratio is the line segment joining (-3, -1) and (-8, -9) divided at the point (-5, -21/5)?
Find the points on the x-axis, each of which is at a distance of 10 units from the point A(11, –8).
Find the co-ordinates of the point equidistant from three given points A(5,3), B(5, -5) and C(1,- 5).
Show that the following points are the vertices of a rectangle.
A (2, -2), B(14,10), C(11,13) and D(-1,1)
Points P, Q, R and S divide the line segment joining the points A(1,2) and B(6,7) in five equal parts. Find the coordinates of the points P,Q and R
`"Find the ratio in which the poin "p (3/4 , 5/12) " divides the line segment joining the points "A (1/2,3/2) and B (2,-5).`
Find the point on x-axis which is equidistant from points A(-1,0) and B(5,0)
Find the value of a, so that the point ( 3,a ) lies on the line represented by 2x - 3y =5 .
A point whose abscissa is −3 and ordinate 2 lies in
Show that ΔABC, where A(–2, 0), B(2, 0), C(0, 2) and ΔPQR where P(–4, 0), Q(4, 0), R(0, 2) are similar triangles.
Find the value of k, if the points A (8, 1) B(3, −4) and C(2, k) are collinear.
If the points A(−2, 1), B(a, b) and C(4, −1) ae collinear and a − b = 1, find the values of aand b.
If P (x, 6) is the mid-point of the line segment joining A (6, 5) and B (4, y), find y.
If P(2, 4), Q(0, 3), R(3, 6) and S(5, y) are the vertices of a parallelogram PQRS, then the value of y is
Write the equations of the x-axis and y-axis.
In the above figure, seg PA, seg QB and RC are perpendicular to seg AC. From the information given in the figure, prove that: `1/x + 1/y = 1/z`
(–1, 7) is a point in the II quadrant.