हिंदी

The points A ( x 1 , y 1 ) , B ( x 2 , y 2 ) , C ( x 3 , y 3 ) are the vertices of ABC . (i) The median from A meets BC at D . Find the coordinates of the point D. - Mathematics

Advertisements
Advertisements

प्रश्न

The points  \[A \left( x_1 , y_1 \right) , B\left( x_2 , y_2 \right) , C\left( x_3 , y_3 \right)\]   are the vertices of  ΔABC .
(i) The median from meets BC at D . Find the coordinates of the point  D.
(ii) Find the coordinates of the point on AD such that AP : PD  = 2 : 1.
(iii) Find the points of coordinates Q and on medians BE and CF respectively such thatBQ : QE = 2 : 1 and CR : RF = 2 : 1.
(iv) What are the coordinates of the centropid of the triangle ABC 

 
 
संक्षेप में उत्तर

उत्तर

(i) Median AD of the triangle will divide the side BC in two equal parts.

Therefore, D is the midpoint of side BC.
Coordinates of D are \[\left( \frac{x_2 + x_3}{2}, \frac{y_2 + y_3}{2} \right)\]

(ii)THe point P divided the side AD in the ratio 2: 1.
Coordinates of P are \[\left( \frac{2 \times \left( \frac{x_2 + x_3}{2} \right) + 1 \times x_1}{2 + 1}, \frac{2 \times \left( \frac{y_2 + y_3}{2} \right) + 1 \times y_1}{2 + 1} \right) = \left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right)\]

(iii)
Median BE of the triangle will divide the side AC in two equal parts.
Therefore, E is the midpoint of side AC.
Coordinates of E are \[\left( \frac{x_1 + x_3}{2}, \frac{y_1 + y_3}{2} \right)\] The point Q divided the side BE in the ratio 2: 1.
Coordinates of Q are \[\left( \frac{2 \times \left( \frac{x_1 + x_3}{2} \right) + 1 \times x_2}{2 + 1}, \frac{2 \times \left( \frac{y_1 + y_3}{2} \right) + 1 \times y_2}{2 + 1} \right) = \left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right)\]

Similarly, Coordinates of Q are R are \[\left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right)\]

(iv)
The points P, Q and R coincides and is the centroid of the triangle ABC.
So, coordinates of the centroid is \[\left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right)\]

 
 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Co-Ordinate Geometry - Exercise 6.3 [पृष्ठ ३१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 6 Co-Ordinate Geometry
Exercise 6.3 | Q 60 | पृष्ठ ३१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Prove that the points (3, 0), (6, 4) and (-1, 3) are the vertices of a right-angled isosceles triangle.


On which axis do the following points lie?

R(−4,0)


If G be the centroid of a triangle ABC, prove that:

AB2 + BC2 + CA2 = 3 (GA2 + GB2 + GC2)


Show that the points A(5, 6), B(1, 5), C(2, 1) and D(6,2) are the vertices of a square.


Find a point on y-axis which is equidistant from the points (5, -2) and (-3, 2).


Prove that the points A(-4,-1), B(-2, 4), C(4, 0) and D(2, 3) are the vertices of a rectangle.


The line joining the points (2, 1) and (5, -8) is trisected at the points P and Q. If point P lies on the line 2x - y + k = 0. Find the value of k.


Points A(-1, y) and B(5,7) lie on the circle with centre O(2, -3y).Find the value of y.


Show that `square` ABCD formed by the vertices A(-4,-7), B(-1,2), C(8,5) and D(5,-4) is a rhombus.


The abscissa of a point is positive in the


If the points P, Q(x, 7), R, S(6, y) in this order divide the line segment joining A(2, p) and B(7, 10) in 5 equal parts, find xy and p


 ABCD is a parallelogram with vertices  \[A ( x_1 , y_1 ), B \left( x_2 , y_2 \right), C ( x_3 , y_3 )\]   . Find the coordinates  of the fourth vertex D in terms of  \[x_1 , x_2 , x_3 , y_1 , y_2 \text{ and }  y_3\]

   

If the centroid of the triangle formed by points P (a, b), Q(b, c) and R (c, a) is at the origin, what is the value of a + b + c?


Find the values of x for which the distance between the point P(2, −3), and Q (x, 5) is 10.

 

What is the distance between the points  \[A\left( \sin\theta - \cos\theta, 0 \right)\] and \[B\left( 0, \sin\theta + \cos\theta \right)\] ?

 
 

If the points (k, 2k), (3k, 3k) and (3, 1) are collinear, then k


If the centroid of the triangle formed by (7, x) (y, −6) and (9, 10) is at (6, 3), then (x, y) =


If the points(x, 4) lies on a circle whose centre is at the origin and radius is 5, then x =


The coordinates of a point on x-axis which lies on the perpendicular bisector of the line segment joining the points (7, 6) and (−3, 4) are


If A(x, 2), B(−3, −4) and C(7, −5) are collinear, then the value of x is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×