हिंदी

If A(X, 2), B(−3, −4) and C(7, −5) Are Collinear, Then the Value of X is - Mathematics

Advertisements
Advertisements

प्रश्न

If A(x, 2), B(−3, −4) and C(7, −5) are collinear, then the value of x is

विकल्प

  •  −63 

  • 63         

  • 60    

  •  −60       

MCQ

उत्तर

The given points A(x, 2), B(−3, −4) and C(7, −5) are collinear.

\[\therefore ar\left( ∆ ABC \right) = 0\]
\[ \Rightarrow \frac{1}{2}\left| x_1 \left( y_2 - y_3 \right) + x_2 \left( y_3 - y_1 \right) + x_3 \left( y_1 - y_2 \right) \right| = 0\]
\[ \Rightarrow x_1 \left( y_2 - y_3 \right) + x_2 \left( y_3 - y_1 \right) + x_3 \left( y_1 - y_2 \right) = 0\]

\[\Rightarrow x\left[ - 4 - \left( - 5 \right) \right] + \left( - 3 \right)\left( - 5 - 2 \right) + 7\left[ 2 - \left( - 4 \right) \right] = 0\]

\[ \Rightarrow x + 21 + 42 = 0\]

\[ \Rightarrow x + 63 = 0\]

\[ \Rightarrow x = - 63\]

Thus, the value of x is −63.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Co-Ordinate Geometry - Exercise 6.7 [पृष्ठ ६६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 6 Co-Ordinate Geometry
Exercise 6.7 | Q 47 | पृष्ठ ६६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If A(–2, 1), B(a, 0), C(4, b) and D(1, 2) are the vertices of a parallelogram ABCD, find the values of a and b. Hence find the lengths of its sides


Find the equation of the perpendicular bisector of the line segment joining points (7, 1) and (3,5).


Find the co-ordinates of the point which divides the join of A(-5, 11) and B(4,-7) in the ratio 7 : 2


If (2, p) is the midpoint of the line segment joining the points A(6, -5) and B(-2,11) find the value of p.


`"Find the ratio in which the poin "p (3/4 , 5/12) " divides the line segment joining the points "A (1/2,3/2) and B (2,-5).`


ABCD is a rectangle whose three vertices are A(4,0), C(4,3) and D(0,3). Find the length of one its diagonal.


Find the ratio in which the line segment joining the points A(3, 8) and B(–9, 3) is divided by the Y– axis.


The abscissa and ordinate of the origin are


The points  \[A \left( x_1 , y_1 \right) , B\left( x_2 , y_2 \right) , C\left( x_3 , y_3 \right)\]   are the vertices of  ΔABC .
(i) The median from meets BC at D . Find the coordinates of the point  D.
(ii) Find the coordinates of the point on AD such that AP : PD  = 2 : 1.
(iii) Find the points of coordinates Q and on medians BE and CF respectively such thatBQ : QE = 2 : 1 and CR : RF = 2 : 1.
(iv) What are the coordinates of the centropid of the triangle ABC 

 
 

In  \[∆\] ABC , the coordinates of vertex A are (0, - 1) and D (1,0) and E(0,10)  respectively the mid-points of the sides AB and AC . If F is the mid-points of the side BC , find the area of \[∆\] DEF.


What is the area of the triangle formed by the points O (0, 0), A (6, 0) and B (0, 4)?

 

Write the coordinates the reflections of points (3, 5) in X and Y -axes.

 

Find the values of x for which the distance between the point P(2, −3), and Q (x, 5) is 10.

 

If P (x, 6) is the mid-point of the line segment joining A (6, 5) and B (4, y), find y.

 

Find the area of triangle with vertices ( ab+c) , (bc+a) and (ca+b).

 

If (−1, 2), (2, −1) and (3, 1) are any three vertices of a parallelogram, then


In which quadrant does the point (-4, -3) lie?


Find the point on the y-axis which is equidistant from the points (S, - 2) and (- 3, 2).


If segment AB is parallel Y-axis and coordinates of A are (1, 3), then the coordinates of B are ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×