Advertisements
Advertisements
Question
The points \[A \left( x_1 , y_1 \right) , B\left( x_2 , y_2 \right) , C\left( x_3 , y_3 \right)\] are the vertices of ΔABC .
(i) The median from A meets BC at D . Find the coordinates of the point D.
(ii) Find the coordinates of the point P on AD such that AP : PD = 2 : 1.
(iii) Find the points of coordinates Q and R on medians BE and CF respectively such thatBQ : QE = 2 : 1 and CR : RF = 2 : 1.
(iv) What are the coordinates of the centropid of the triangle ABC ?
Solution
(i) Median AD of the triangle will divide the side BC in two equal parts.
Therefore, D is the midpoint of side BC.
Coordinates of D are \[\left( \frac{x_2 + x_3}{2}, \frac{y_2 + y_3}{2} \right)\]
(ii)THe point P divided the side AD in the ratio 2: 1.
Coordinates of P are \[\left( \frac{2 \times \left( \frac{x_2 + x_3}{2} \right) + 1 \times x_1}{2 + 1}, \frac{2 \times \left( \frac{y_2 + y_3}{2} \right) + 1 \times y_1}{2 + 1} \right) = \left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right)\]
(iii)
Median BE of the triangle will divide the side AC in two equal parts.
Therefore, E is the midpoint of side AC.
Coordinates of E are \[\left( \frac{x_1 + x_3}{2}, \frac{y_1 + y_3}{2} \right)\] The point Q divided the side BE in the ratio 2: 1.
Coordinates of Q are \[\left( \frac{2 \times \left( \frac{x_1 + x_3}{2} \right) + 1 \times x_2}{2 + 1}, \frac{2 \times \left( \frac{y_1 + y_3}{2} \right) + 1 \times y_2}{2 + 1} \right) = \left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right)\]
Similarly, Coordinates of Q are R are \[\left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right)\]
(iv)
The points P, Q and R coincides and is the centroid of the triangle ABC.
So, coordinates of the centroid is \[\left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right)\]
APPEARS IN
RELATED QUESTIONS
If the point A (4,3) and B ( x,5) lies on a circle with the centre o (2,3) . Find the value of x.
Point A lies on the line segment PQ joining P(6, -6) and Q(-4, -1) in such a way that `(PA)/( PQ)=2/5` . If that point A also lies on the line 3x + k( y + 1 ) = 0, find the value of k.
Find the ratio in which the point (−3, k) divides the line-segment joining the points (−5, −4) and (−2, 3). Also find the value of k ?
Show that A(-4, -7), B(-1, 2), C(8, 5) and D(5, -4) are the vertices of a
rhombus ABCD.
Points (−4, 0) and (7, 0) lie
The ordinate of any point on x-axis is
Prove hat the points A (2, 3) B(−2,2) C(−1,−2), and D(3, −1) are the vertices of a square ABCD.
If the mid-point of the segment joining A (x, y + 1) and B (x + 1, y + 2) is C \[\left( \frac{3}{2}, \frac{5}{2} \right)\] , find x, y.
If points Q and reflections of point P (−3, 4) in X and Y axes respectively, what is QR?
What is the distance between the points A (c, 0) and B (0, −c)?
The distance between the points (cos θ, 0) and (sin θ − cos θ) is
The distance between the points (a cos θ + b sin θ, 0) and (0, a sin θ − b cos θ) is
If the centroid of the triangle formed by the points (a, b), (b, c) and (c, a) is at the origin, then a3 + b3 + c3 =
If Points (1, 2) (−5, 6) and (a, −2) are collinear, then a =
If the points P (x, y) is equidistant from A (5, 1) and B (−1, 5), then
The coordinates of a point on x-axis which lies on the perpendicular bisector of the line segment joining the points (7, 6) and (−3, 4) are
The point on the x-axis which is equidistant from points (−1, 0) and (5, 0) is
If P(2, 4), Q(0, 3), R(3, 6) and S(5, y) are the vertices of a parallelogram PQRS, then the value of y is
In which quadrant does the point (-4, -3) lie?
The line segment joining the points A(2, 1) and B (5, - 8) is trisected at the points P and Q such that P is nearer to A. If P also lies on the line given by 2x - y + k= 0 find the value of k.