English

The points A ( x 1 , y 1 ) , B ( x 2 , y 2 ) , C ( x 3 , y 3 ) are the vertices of ABC . (i) The median from A meets BC at D . Find the coordinates of the point D. - Mathematics

Advertisements
Advertisements

Question

The points  \[A \left( x_1 , y_1 \right) , B\left( x_2 , y_2 \right) , C\left( x_3 , y_3 \right)\]   are the vertices of  ΔABC .
(i) The median from meets BC at D . Find the coordinates of the point  D.
(ii) Find the coordinates of the point on AD such that AP : PD  = 2 : 1.
(iii) Find the points of coordinates Q and on medians BE and CF respectively such thatBQ : QE = 2 : 1 and CR : RF = 2 : 1.
(iv) What are the coordinates of the centropid of the triangle ABC 

 
 
Answer in Brief

Solution

(i) Median AD of the triangle will divide the side BC in two equal parts.

Therefore, D is the midpoint of side BC.
Coordinates of D are \[\left( \frac{x_2 + x_3}{2}, \frac{y_2 + y_3}{2} \right)\]

(ii)THe point P divided the side AD in the ratio 2: 1.
Coordinates of P are \[\left( \frac{2 \times \left( \frac{x_2 + x_3}{2} \right) + 1 \times x_1}{2 + 1}, \frac{2 \times \left( \frac{y_2 + y_3}{2} \right) + 1 \times y_1}{2 + 1} \right) = \left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right)\]

(iii)
Median BE of the triangle will divide the side AC in two equal parts.
Therefore, E is the midpoint of side AC.
Coordinates of E are \[\left( \frac{x_1 + x_3}{2}, \frac{y_1 + y_3}{2} \right)\] The point Q divided the side BE in the ratio 2: 1.
Coordinates of Q are \[\left( \frac{2 \times \left( \frac{x_1 + x_3}{2} \right) + 1 \times x_2}{2 + 1}, \frac{2 \times \left( \frac{y_1 + y_3}{2} \right) + 1 \times y_2}{2 + 1} \right) = \left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right)\]

Similarly, Coordinates of Q are R are \[\left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right)\]

(iv)
The points P, Q and R coincides and is the centroid of the triangle ABC.
So, coordinates of the centroid is \[\left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right)\]

 
 
shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Co-Ordinate Geometry - Exercise 6.3 [Page 31]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 6 Co-Ordinate Geometry
Exercise 6.3 | Q 60 | Page 31

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

If the point A (4,3) and B ( x,5)  lies on a circle with the centre o (2,3) . Find the value of x.


Point A lies on the line segment PQ joining P(6, -6) and Q(-4, -1) in such a way that `(PA)/( PQ)=2/5` . If that point A also lies on the line 3x + k( y + 1 ) = 0, find the value of k.


Find the ratio in which the point (−3, k) divides the line-segment joining the points (−5, −4) and (−2, 3). Also find the value of k ?


Show that A(-4, -7), B(-1, 2), C(8, 5) and D(5, -4) are the vertices of a
rhombus ABCD.


Points (−4, 0) and (7, 0) lie


The ordinate of any point on x-axis is


 Prove hat the points A (2, 3) B(−2,2) C(−1,−2), and D(3, −1) are the vertices of a square ABCD.


If the mid-point of the segment joining A (xy + 1) and B (x + 1, y + 2) is C \[\left( \frac{3}{2}, \frac{5}{2} \right)\] , find xy.

 

 
 

If points Q and reflections of point P (−3, 4) in X and Y axes respectively, what is QR?

 

What is the distance between the points A (c, 0) and B (0, −c)?

 

The distance between the points (cos θ, 0) and (sin θ − cos θ) is


The distance between the points (a cos θ + b sin θ, 0) and (0, a sin θ − b cos θ) is


If the centroid of the triangle formed by the points (a, b), (b, c) and (c, a) is at the origin, then a3 b3 + c3 =


If Points (1, 2) (−5, 6) and (a, −2) are collinear, then a =


If the points P (xy) is equidistant from A (5, 1) and B (−1, 5), then


The coordinates of a point on x-axis which lies on the perpendicular bisector of the line segment joining the points (7, 6) and (−3, 4) are


The point on the x-axis which is equidistant from points (−1, 0) and (5, 0) is


If P(2, 4), Q(0, 3), R(3, 6) and S(5, y) are the vertices of a parallelogram PQRS, then the value of y is


In which quadrant does the point (-4, -3) lie?


The line segment joining the points A(2, 1) and B (5, - 8) is trisected at the points P and Q such that P is nearer to A. If P also lies on the line given by  2x - y + k= 0  find the value of k.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×