Advertisements
Advertisements
प्रश्न
If (a,b) is the mid-point of the line segment joining the points A (10, - 6) , B (k,4) and a - 2b = 18 , find the value of k and the distance AB.
उत्तर
It is given that A(10, −6) and B(k, 4).
Suppose (a, b) be midpoint of AB. Then,
\[a = \frac{10 + k}{2}, b = \frac{- 6 + 4}{2} = \frac{- 2}{2} = - 1\]
\[\text{ Now } , a - 2b = 18\]
\[ \Rightarrow a = 18 - 2 = 16\]
\[\text{ Therefore }, \]
\[16 \times 2 = 10 + k\]
\[ \Rightarrow k = 22\]
\[\text{ Further } , \]
\[AB = \sqrt{\left( 22 - 10 \right)^2 + \left( 4 + 6 \right)^2}\]
\[ = \sqrt{144 + 100}\]
\[ = 2\sqrt{61}\]
APPEARS IN
संबंधित प्रश्न
(Street Plan): A city has two main roads which cross each other at the centre of the city. These two roads are along the North-South direction and East-West direction.
All the other streets of the city run parallel to these roads and are 200 m apart. There are 5 streets in each direction. Using 1cm = 200 m, draw a model of the city on your notebook. Represent the roads/streets by single lines.
There are many cross- streets in your model. A particular cross-street is made by two streets, one running in the North - South direction and another in the East - West direction. Each cross street is referred to in the following manner : If the 2nd street running in the North - South direction and 5th in the East - West direction meet at some crossing, then we will call this cross-street (2, 5). Using this convention, find:
- how many cross - streets can be referred to as (4, 3).
- how many cross - streets can be referred to as (3, 4).
Let ABCD be a square of side 2a. Find the coordinates of the vertices of this square when A coincides with the origin and AB and AD are along OX and OY respectively.
Which point on the x-axis is equidistant from (5, 9) and (−4, 6)?
Show that the points (−3, 2), (−5,−5), (2, −3) and (4, 4) are the vertices of a rhombus. Find the area of this rhombus.
Find the ratio in which the point (-1, y) lying on the line segment joining points A(-3, 10) and (6, -8) divides it. Also, find the value of y.
If the point \[C \left( - 1, 2 \right)\] divides internally the line segment joining the points A (2, 5) and B( x, y ) in the ratio 3 : 4 , find the value of x2 + y2 .
If the distance between the points (3, 0) and (0, y) is 5 units and y is positive. then what is the value of y?
Find the coordinates of the point which is equidistant from the three vertices A (\[2x, 0) O (0, 0) \text{ and } B(0, 2y) of ∆\] AOB .
The distance between the points (a cos θ + b sin θ, 0) and (0, a sin θ − b cos θ) is
The distance of the point (4, 7) from the x-axis is
The coordinates of the circumcentre of the triangle formed by the points O (0, 0), A (a, 0 and B (0, b) are
If (−2, 1) is the centroid of the triangle having its vertices at (x , 0) (5, −2), (−8, y), then x, y satisfy the relation
If A(4, 9), B(2, 3) and C(6, 5) are the vertices of ∆ABC, then the length of median through C is
A line intersects the y-axis and x-axis at P and Q , respectively. If (2,-5) is the mid-point of PQ, then the coordinates of P and Q are, respectively
Students of a school are standing in rows and columns in their playground for a drill practice. A, B, C and D are the positions of four students as shown in figure. Is it possible to place Jaspal in the drill in such a way that he is equidistant from each of the four students A, B, C and D? If so, what should be his position?
The point at which the two coordinate axes meet is called the ______.
If the coordinate of point A on the number line is –1 and that of point B is 6, then find d(A, B).
The distance of the point (–4, 3) from y-axis is ______.
Distance of the point (6, 5) from the y-axis is ______.