हिंदी

If the Distance Between the Points (3, 0) and (0, Y) is 5 Units and Y is Positive. Then What is the Value of Y? - Mathematics

Advertisements
Advertisements

प्रश्न

If the distance between the points (3, 0) and (0, y) is 5 units and y is positive. then what is the value of y?

टिप्पणी लिखिए

उत्तर

It is given that distance between P (3, 0) and Q (0 , y)  is 5.

In general, the distance between A`(x_1 , y_1 ) "  and B "(x_2 , y_12)`  is given by,

`AB^2 = (x_2 - x_1) ^2 + ( y_2 - y_1)^2`

So,

`5^2 = (0 -3)^2 + ( y - 0)^2`

On further simplification,

`y^2 = 16`

   ` y = +-4`

We will neglect the negative value. So,

y = 4

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Co-Ordinate Geometry - Exercise 6.6 [पृष्ठ ६२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 6 Co-Ordinate Geometry
Exercise 6.6 | Q 24 | पृष्ठ ६२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Two vertices of an isosceles triangle are (2, 0) and (2, 5). Find the third vertex if the length of the equal sides is 3.


Show that the points A(5, 6), B(1, 5), C(2, 1) and D(6,2) are the vertices of a square.


If three consecutive vertices of a parallelogram are (1, -2), (3, 6) and (5, 10), find its fourth vertex.


Show hat A(1,2), B(4,3),C(6,6) and D(3,5) are the vertices of a parallelogram. Show that ABCD is not rectangle.


Points A(-1, y) and B(5,7) lie on the circle with centre O(2, -3y).Find the value of y.


If the points  A(4,3)  and B( x,5) lie on the circle with center  O(2,3 ) find the value of x .


Show that `square` ABCD formed by the vertices A(-4,-7), B(-1,2), C(8,5) and D(5,-4) is a rhombus.


ΔXYZ ∼ ΔPYR; In ΔXYZ, ∠Y = 60o, XY = 4.5 cm, YZ = 5.1 cm and XYPY =` 4/7` Construct ΔXYZ and ΔPYR.


The perpendicular distance of the point P (4, 3) from x-axis is


In  \[∆\] ABC , the coordinates of vertex A are (0, - 1) and D (1,0) and E(0,10)  respectively the mid-points of the sides AB and AC . If F is the mid-points of the side BC , find the area of \[∆\] DEF.


Find the area of a parallelogram ABCD if three of its vertices are A(2, 4), B(2 + \[\sqrt{3}\] , 5) and C(2, 6).                 

 


If the points A(−1, −4), B(bc) and C(5, −1) are collinear and 2b + c = 4, find the values of b and c.


Find the value of a so that the point (3, a) lies on the line represented by 2x − 3y + 5 = 0


If the centroid of the triangle formed by the points (a, b), (b, c) and (c, a) is at the origin, then a3 b3 + c3 =


Find the coordinates of the point of intersection of the graph of the equation x = 2 and y = – 3


The line 3x + y – 9 = 0 divides the line joining the points (1, 3) and (2, 7) internally in the ratio ______.


The points (–5, 2) and (2, –5) lie in the ______.


Points (1, –1) and (–1, 1) lie in the same quadrant.


The distance of the point (–4, 3) from y-axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×