हिंदी

Find the Coordinates of the Point Which is Equidistant from the Three Vertices a ( 2 X , 0 ) O ( 0 , 0 ) and B ( 0 , 2 Y ) O F δ Aob . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the coordinates of the point which is equidistant from the three vertices A (\[2x, 0) O (0, 0) \text{ and }  B(0, 2y) of ∆\]  AOB .

 
 

 

टिप्पणी लिखिए

उत्तर

It is known that, in a right angled triangle midpoint of the hypotenuse is equidistant from ots vertices.
Suppose D be the midpoint of the hypotenuse AB.
The coordinates of D are \[\left( \frac{2x + 0}{2}, \frac{0 + 2y}{2} \right) = \left( x, y \right)\] .

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Co-Ordinate Geometry - Exercise 6.6 [पृष्ठ ६२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 6 Co-Ordinate Geometry
Exercise 6.6 | Q 32 | पृष्ठ ६२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find a point on the x-axis which is equidistant from the points (7, 6) and (−3, 4).


Find the points of trisection of the line segment joining the points:

(3, -2) and (-3, -4)


Find the coordinates of the point where the diagonals of the parallelogram formed by joining the points (-2, -1), (1, 0), (4, 3) and(1, 2) meet


In what ratio is the line segment joining (-3, -1) and (-8, -9) divided at the point (-5, -21/5)?


Find the points on the x-axis, each of which is at a distance of 10 units from the point A(11, –8).


Show that the following points are the vertices of a square:

(i) A (3,2), B(0,5), C(-3,2) and D(0,-1)


In what ratio does y-axis divide the line segment joining the points (-4, 7) and (3, -7)?


The base BC of an equilateral triangle ABC lies on y-axis. The coordinates of point C are (0, -3). The origin is the midpoint of the base. Find the coordinates of the points A and B. Also, find the coordinates of another point D such that ABCD is a rhombus.


If A(3, y) is equidistant from points P(8, −3) and Q(7, 6), find the value of y and find the distance AQ. 


If the points P, Q(x, 7), R, S(6, y) in this order divide the line segment joining A(2, p) and B(7, 10) in 5 equal parts, find xy and p


The points  \[A \left( x_1 , y_1 \right) , B\left( x_2 , y_2 \right) , C\left( x_3 , y_3 \right)\]   are the vertices of  ΔABC .
(i) The median from meets BC at D . Find the coordinates of the point  D.
(ii) Find the coordinates of the point on AD such that AP : PD  = 2 : 1.
(iii) Find the points of coordinates Q and on medians BE and CF respectively such thatBQ : QE = 2 : 1 and CR : RF = 2 : 1.
(iv) What are the coordinates of the centropid of the triangle ABC 

 
 

If the points A(−2, 1), B(a, b) and C(4, −1) ae collinear and a − b = 1, find the values of aand b.      


If the points A(1, –2), B(2, 3) C(a, 2) and D(– 4, –3) form a parallelogram, find the value of a and height of the parallelogram taking AB as base.  


The distance between the points (a cos θ + b sin θ, 0) and (0, a sin θ − b cos θ) is


The ratio in which (4, 5) divides the join of (2, 3) and (7, 8) is


If the centroid of the triangle formed by the points (3, −5), (−7, 4), (10, −k) is at the point (k −1), then k =


What is the form of co-ordinates of a point on the X-axis?


Any point on the line y = x is of the form ______.


If segment AB is parallel Y-axis and coordinates of A are (1, 3), then the coordinates of B are ______


Point (3, 0) lies in the first quadrant.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×