हिंदी

Find the Centre of the Circle Passing Through (5, -8), (2, -9) and (2, 1). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the centre of the circle passing through (5, -8), (2, -9) and (2, 1).

उत्तर

The distance d between two points `(x_1,y_1)and `(x_2,y_2)` is given by the formula

`d = sqrt((x_1 - x_2)^2 + (y_1 - y_2)^2)`

The centre of a circle is at equal distance from all the points on its circumference.

Here it is given that the circle passes through the points A(5,8), B(2,9) and C(2,1).

Let the centre of the circle be represented by the point O(x, y).

So we have AO =  BO = CO

`AO = sqrt((5 - x)^2 + (-8 - y)^2)`

`BO = sqrt((2 - x)^2 + (-9-y)^2)`

`CO = sqrt((2 - x)^2 + (1 - y)^2)`

Equating the first pair of these equations we have,

AO = BO

`sqrt((5 - x)^2 + (-8 - y)^2) = sqrt((2 - x)^2 + (-9 - y)^2)`

Squaring on both sides of the equation we have,

`(5 -x)^2 + (-8 - y)^2 = (2 - x)^2 + (-9 - y)^2`

`25 + x^2 - 10x + 64 + y^2 + 16y = 4 + x^2 - 4x + 81 + y^2 + 18y` 

6x + 2y = 4

3x + y = 2

Equating another pair of the equations we have,

AO =BO

`sqrt((5 - x)^2 + (-8 - y)^2) = sqrt((2 - x)^2 + (-9-y)^2)`

Squaring on both sides of the equation we have,

`(5 - x)^2 + (-8 - y)^2 = (2 - x)^2 + (-9 - y)^2`

`25 + x^2 - 10x + 64 + y^2 + 16y = 4 + x^2 - 4x + 81 + y^2 + 18y`

6x + 2y = 4

3x + y = 2

Equating another pair of the equations we have,

AO = CO

`sqrt((5 -x)^2 + (-8 - y)^2) = sqrt((2 -x)^2 + (1 - y)^2)`

`25 + x^2 - 10x + 64 + y^2 + 16y = 4 + x^2 -4x + 1 + y^2 - 2y`

6x - 8y = 84

x - 3y = 14

Now we have two equations for ‘x’ and ‘y’, which are

3x + y = 2

x - 3y = 14

From the second equation we have y = -3x + 2. Substituting this value of ‘y’ in the first equation we have,

x - 3(-3x + 2) = 14

x + 9x - 6 = 14

10x = 20

x = 2

Therefore the value of ‘y’ is,

y = -3x + 2

= -3(2) + 2

y = -4

Hence the co-ordinates of the centre of the circle are (2, -4)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Co-Ordinate Geometry - Exercise 6.2 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 6 Co-Ordinate Geometry
Exercise 6.2 | Q 54 | पृष्ठ १७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Prove that the points (3, 0), (6, 4) and (-1, 3) are the vertices of a right-angled isosceles triangle.


If two opposite vertices of a square are (5, 4) and (1, −6), find the coordinates of its remaining two vertices.


A (3, 2) and B (−2, 1)  are two vertices of a triangle ABC whose centroid G has the coordinates `(5/3,-1/3)`Find the coordinates of the third vertex C of the triangle.


In what ratio does the point (−4, 6) divide the line segment joining the points A(−6, 10) and B(3,−8)?


Points A(-1, y) and B(5,7) lie on the circle with centre O(2, -3y).Find the value of y.


Find the centroid of the triangle whose vertices  is (−2, 3) (2, −1) (4, 0) .


If the point P (m, 3) lies on the line segment joining the points \[A\left( - \frac{2}{5}, 6 \right)\] and B (2, 8), find the value of m.

 
 

Write the coordinates of the point dividing line segment joining points (2, 3) and (3, 4) internally in the ratio 1 : 5.


If the centroid of the triangle formed by points P (a, b), Q(b, c) and R (c, a) is at the origin, what is the value of a + b + c?


If P (2, p) is the mid-point of the line segment joining the points A (6, −5) and B (−2, 11). find the value of p.


If A (1, 2) B (4, 3) and C (6, 6) are the three vertices of a parallelogram ABCD, find the coordinates of fourth vertex D.

 

What is the distance between the points  \[A\left( \sin\theta - \cos\theta, 0 \right)\] and \[B\left( 0, \sin\theta + \cos\theta \right)\] ?

 
 

The distance between the points (a cos θ + b sin θ, 0) and (0, a sin θ − b cos θ) is


If (−2, 1) is the centroid of the triangle having its vertices at (x , 0) (5, −2),  (−8, y), then xy satisfy the relation


The coordinates of the point P dividing the line segment joining the points A (1, 3) and B(4, 6) in the ratio 2 : 1 are


Any point on the line y = x is of the form ______.


Point (–10, 0) lies ______.


In which ratio the y-axis divides the line segment joining the points (5, – 6) and (–1, – 4)?


Distance of the point (6, 5) from the y-axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×