Advertisements
Advertisements
प्रश्न
Find the centre of the circle passing through (5, -8), (2, -9) and (2, 1).
उत्तर
The distance d between two points `(x_1,y_1)and `(x_2,y_2)` is given by the formula
`d = sqrt((x_1 - x_2)^2 + (y_1 - y_2)^2)`
The centre of a circle is at equal distance from all the points on its circumference.
Here it is given that the circle passes through the points A(5,−8), B(2,−9) and C(2,1).
Let the centre of the circle be represented by the point O(x, y).
So we have AO = BO = CO
`AO = sqrt((5 - x)^2 + (-8 - y)^2)`
`BO = sqrt((2 - x)^2 + (-9-y)^2)`
`CO = sqrt((2 - x)^2 + (1 - y)^2)`
Equating the first pair of these equations we have,
AO = BO
`sqrt((5 - x)^2 + (-8 - y)^2) = sqrt((2 - x)^2 + (-9 - y)^2)`
Squaring on both sides of the equation we have,
`(5 -x)^2 + (-8 - y)^2 = (2 - x)^2 + (-9 - y)^2`
`25 + x^2 - 10x + 64 + y^2 + 16y = 4 + x^2 - 4x + 81 + y^2 + 18y`
6x + 2y = 4
3x + y = 2
Equating another pair of the equations we have,
AO =BO
`sqrt((5 - x)^2 + (-8 - y)^2) = sqrt((2 - x)^2 + (-9-y)^2)`
Squaring on both sides of the equation we have,
`(5 - x)^2 + (-8 - y)^2 = (2 - x)^2 + (-9 - y)^2`
`25 + x^2 - 10x + 64 + y^2 + 16y = 4 + x^2 - 4x + 81 + y^2 + 18y`
6x + 2y = 4
3x + y = 2
Equating another pair of the equations we have,
AO = CO
`sqrt((5 -x)^2 + (-8 - y)^2) = sqrt((2 -x)^2 + (1 - y)^2)`
`25 + x^2 - 10x + 64 + y^2 + 16y = 4 + x^2 -4x + 1 + y^2 - 2y`
6x - 8y = 84
x - 3y = 14
Now we have two equations for ‘x’ and ‘y’, which are
3x + y = 2
x - 3y = 14
From the second equation we have y = -3x + 2. Substituting this value of ‘y’ in the first equation we have,
x - 3(-3x + 2) = 14
x + 9x - 6 = 14
10x = 20
x = 2
Therefore the value of ‘y’ is,
y = -3x + 2
= -3(2) + 2
y = -4
Hence the co-ordinates of the centre of the circle are (2, -4)
APPEARS IN
संबंधित प्रश्न
Prove that the points (3, 0), (6, 4) and (-1, 3) are the vertices of a right-angled isosceles triangle.
If two opposite vertices of a square are (5, 4) and (1, −6), find the coordinates of its remaining two vertices.
A (3, 2) and B (−2, 1) are two vertices of a triangle ABC whose centroid G has the coordinates `(5/3,-1/3)`Find the coordinates of the third vertex C of the triangle.
In what ratio does the point (−4, 6) divide the line segment joining the points A(−6, 10) and B(3,−8)?
Points A(-1, y) and B(5,7) lie on the circle with centre O(2, -3y).Find the value of y.
Find the centroid of the triangle whose vertices is (−2, 3) (2, −1) (4, 0) .
If the point P (m, 3) lies on the line segment joining the points \[A\left( - \frac{2}{5}, 6 \right)\] and B (2, 8), find the value of m.
Write the coordinates of the point dividing line segment joining points (2, 3) and (3, 4) internally in the ratio 1 : 5.
If the centroid of the triangle formed by points P (a, b), Q(b, c) and R (c, a) is at the origin, what is the value of a + b + c?
If P (2, p) is the mid-point of the line segment joining the points A (6, −5) and B (−2, 11). find the value of p.
If A (1, 2) B (4, 3) and C (6, 6) are the three vertices of a parallelogram ABCD, find the coordinates of fourth vertex D.
What is the distance between the points \[A\left( \sin\theta - \cos\theta, 0 \right)\] and \[B\left( 0, \sin\theta + \cos\theta \right)\] ?
The distance between the points (a cos θ + b sin θ, 0) and (0, a sin θ − b cos θ) is
If (−2, 1) is the centroid of the triangle having its vertices at (x , 0) (5, −2), (−8, y), then x, y satisfy the relation
The coordinates of the point P dividing the line segment joining the points A (1, 3) and B(4, 6) in the ratio 2 : 1 are
Any point on the line y = x is of the form ______.
Point (–10, 0) lies ______.
In which ratio the y-axis divides the line segment joining the points (5, – 6) and (–1, – 4)?
Distance of the point (6, 5) from the y-axis is ______.