मराठी

Find the Centre of the Circle Passing Through (5, -8), (2, -9) and (2, 1). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the centre of the circle passing through (5, -8), (2, -9) and (2, 1).

उत्तर

The distance d between two points `(x_1,y_1)and `(x_2,y_2)` is given by the formula

`d = sqrt((x_1 - x_2)^2 + (y_1 - y_2)^2)`

The centre of a circle is at equal distance from all the points on its circumference.

Here it is given that the circle passes through the points A(5,8), B(2,9) and C(2,1).

Let the centre of the circle be represented by the point O(x, y).

So we have AO =  BO = CO

`AO = sqrt((5 - x)^2 + (-8 - y)^2)`

`BO = sqrt((2 - x)^2 + (-9-y)^2)`

`CO = sqrt((2 - x)^2 + (1 - y)^2)`

Equating the first pair of these equations we have,

AO = BO

`sqrt((5 - x)^2 + (-8 - y)^2) = sqrt((2 - x)^2 + (-9 - y)^2)`

Squaring on both sides of the equation we have,

`(5 -x)^2 + (-8 - y)^2 = (2 - x)^2 + (-9 - y)^2`

`25 + x^2 - 10x + 64 + y^2 + 16y = 4 + x^2 - 4x + 81 + y^2 + 18y` 

6x + 2y = 4

3x + y = 2

Equating another pair of the equations we have,

AO =BO

`sqrt((5 - x)^2 + (-8 - y)^2) = sqrt((2 - x)^2 + (-9-y)^2)`

Squaring on both sides of the equation we have,

`(5 - x)^2 + (-8 - y)^2 = (2 - x)^2 + (-9 - y)^2`

`25 + x^2 - 10x + 64 + y^2 + 16y = 4 + x^2 - 4x + 81 + y^2 + 18y`

6x + 2y = 4

3x + y = 2

Equating another pair of the equations we have,

AO = CO

`sqrt((5 -x)^2 + (-8 - y)^2) = sqrt((2 -x)^2 + (1 - y)^2)`

`25 + x^2 - 10x + 64 + y^2 + 16y = 4 + x^2 -4x + 1 + y^2 - 2y`

6x - 8y = 84

x - 3y = 14

Now we have two equations for ‘x’ and ‘y’, which are

3x + y = 2

x - 3y = 14

From the second equation we have y = -3x + 2. Substituting this value of ‘y’ in the first equation we have,

x - 3(-3x + 2) = 14

x + 9x - 6 = 14

10x = 20

x = 2

Therefore the value of ‘y’ is,

y = -3x + 2

= -3(2) + 2

y = -4

Hence the co-ordinates of the centre of the circle are (2, -4)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Co-Ordinate Geometry - Exercise 6.2 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 6 Co-Ordinate Geometry
Exercise 6.2 | Q 54 | पृष्ठ १७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the value of k, if the point P (0, 2) is equidistant from (3, k) and (k, 5).


A (3, 2) and B (−2, 1)  are two vertices of a triangle ABC whose centroid G has the coordinates `(5/3,-1/3)`Find the coordinates of the third vertex C of the triangle.


Name the quadrilateral formed, if any, by the following points, and given reasons for your answers:

A(4, 5) B(7, 6), C (4, 3), D(1, 2)


Show hat A(1,2), B(4,3),C(6,6) and D(3,5) are the vertices of a parallelogram. Show that ABCD is not rectangle.


Show that the following points are the vertices of a rectangle.

A (2, -2), B(14,10), C(11,13) and D(-1,1)


Find the ratio in which the point (−3, k) divides the line-segment joining the points (−5, −4) and (−2, 3). Also find the value of k ?


Mark the correct alternative in each of the following:
The point of intersect of the coordinate axes is


If A(3, y) is equidistant from points P(8, −3) and Q(7, 6), find the value of y and find the distance AQ. 


If three points (x1, y1) (x2, y2), (x3, y3) lie on the same line, prove that  \[\frac{y_2 - y_3}{x_2 x_3} + \frac{y_3 - y_1}{x_3 x_1} + \frac{y_1 - y_2}{x_1 x_2} = 0\]

 


Write the coordinates of a point on X-axis which is equidistant from the points (−3, 4) and (2, 5).


What is the distance between the points  \[A\left( \sin\theta - \cos\theta, 0 \right)\] and \[B\left( 0, \sin\theta + \cos\theta \right)\] ?

 
 

If points (t, 2t), (−2, 6) and (3, 1) are collinear, then t =


 The ratio in which the x-axis divides the segment joining (3, 6) and (12, −3) is


If A(4, 9), B(2, 3) and C(6, 5) are the vertices of ∆ABC, then the length of median through C is


If point P is midpoint of segment joining point A(– 4, 2) and point B(6, 2), then the coordinates of P are ______


The line segment joining the points (3, -1) and (-6, 5) is trisected. The coordinates of point of trisection are ______.


The points whose abscissa and ordinate have different signs will lie in ______.


Find the coordinates of the point which lies on x and y axes both.


If the vertices of a parallelogram PQRS taken in order are P(3, 4), Q(–2, 3) and R(–3, –2), then the coordinates of its fourth vertex S are ______.


Statement A (Assertion): If the coordinates of the mid-points of the sides AB and AC of ∆ABC are D(3, 5) and E(–3, –3) respectively, then BC = 20 units.

Statement R (Reason): The line joining the mid-points of two sides of a triangle is parallel to the third side and equal to half of it.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×