मराठी

Name the Quadrilateral Formed, If Any, by the Following Points, and Given Reasons for Your Answers: A(4, 5) B(7, 6), C (4, 3), D(1, 2) - Mathematics

Advertisements
Advertisements

प्रश्न

Name the quadrilateral formed, if any, by the following points, and given reasons for your answers:

A(4, 5) B(7, 6), C (4, 3), D(1, 2)

उत्तर

A (4, 5), B (7,6), C(4,3), D(1,2)

Let A, B, C and D be the four vertices of the quadrilateral ABCD.

We know the distance between two points `P(x_1,y_1)` and `Q(x_2, y_2)is given by distance formula:

`PQ = sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)`

Hence

`=> AB = sqrt((7 - 4)^2 + (6 - 5)^2)`      

`=> AB = sqrt((-3)^2 + (-3)^2)`

`=> AB = sqrt(9 + 1)`

`=> AB = sqrt(10)`

Similarly,

`=> BC = sqrt((4 - 7)^2 + (3 - 6)^2)`

`=> BC = sqrt((-3)^2 + (1)^2)`               

`=> BC= sqrt(9  + 9)`

`=> BC = sqrt18`

Similarly

`=> CD = sqrt((1 - 4)^2 + (2 - 3)^2)`

`=> CD = sqrt((-3)^2 + (-1)^2)`

`=> CD = sqrt(9 + 1)`

`=> CD = sqrt(9 + 1)`

`=> CD = sqrt10`

Also

`=> DA = sqrt((1 - 4)^2 + (2 -5)^2)`

`=> DA = sqrt((-3)^2 + (-3)^2)`

`=> DA = sqrt(9 + 9)`

`=> DA = sqrt18`

Hence from above we see that

AB = CD and BC = DA

Hence from above we see that

AB = CD and BC = DA

Here opposite sides of the quadrilateral is equal. Hence it is a parallelogram

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Co-Ordinate Geometry - Exercise 6.2 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 6 Co-Ordinate Geometry
Exercise 6.2 | Q 38.3 | पृष्ठ १७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Let ABCD be a square of side 2a. Find the coordinates of the vertices of this square when A coincides with the origin and AB and AD are along OX and OY respectively.


Find the ratio in which the point (2, y) divides the line segment joining the points A (-2,2) and B (3, 7). Also, find the value of y.


Prove that the points (4, 5) (7, 6), (6, 3) (3, 2) are the vertices of a parallelogram. Is it a rectangle.


Find the coordinates of the points which divide the line segment joining the points (-4, 0) and (0, 6) in four equal parts.


ABCD is a rectangle whose three vertices are A(4,0), C(4,3) and D(0,3). Find the length of one its diagonal.


Find the centroid of ΔABC  whose vertices are A(2,2) , B (-4,-4) and C (5,-8).


Find the value(s) of k for which the points (3k − 1, k − 2), (kk − 7) and (k − 1, −k − 2) are collinear.     


Find the values of x for which the distance between the point P(2, −3), and Q (x, 5) is 10.

 

The ratio in which (4, 5) divides the join of (2, 3) and (7, 8) is


If the centroid of the triangle formed by the points (a, b), (b, c) and (c, a) is at the origin, then a3 b3 + c3 =


If (−2, 1) is the centroid of the triangle having its vertices at (x , 0) (5, −2),  (−8, y), then xy satisfy the relation


What is the nature of the line which includes the points (-5, 5), (6, 5), (-3, 5), (0, 5)?


If point P is midpoint of segment joining point A(– 4, 2) and point B(6, 2), then the coordinates of P are ______


The point at which the two coordinate axes meet is called the ______.


Point (3, 0) lies in the first quadrant.


Points (1, –1) and (–1, 1) lie in the same quadrant.


The coordinates of a point whose ordinate is `-1/2` and abscissa is 1 are `-1/2, 1`.


Find the coordinates of the point which lies on x and y axes both.


Assertion (A): The ratio in which the line segment joining (2, -3) and (5, 6) internally divided by x-axis is 1:2.

Reason (R): as formula for the internal division is `((mx_2 + nx_1)/(m + n) , (my_2 + ny_1)/(m + n))`


Ryan, from a very young age, was fascinated by the twinkling of stars and the vastness of space. He always dreamt of becoming an astronaut one day. So, he started to sketch his own rocket designs on the graph sheet. One such design is given below :

Based on the above, answer the following questions:

i. Find the mid-point of the segment joining F and G.    (1) 

ii. a. What is the distance between the points A and C?   (2)

OR

b. Find the coordinates of the points which divides the line segment joining the points A and B in the ratio 1 : 3 internally.    (2)

iii. What are the coordinates of the point D?    (1)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×