हिंदी

Find the Angle Subtended at the Origin by the Line Segment Whose End Points Are (0, 100) and (10, 0) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the angle subtended at the origin by the line segment whose end points are (0, 100) and (10, 0).

उत्तर

Let the given points be A(0,100), B(10,0) and the origin be denoted by o(0,0)

We know that

In a right angled triangle the angle oppposite the hypotenuse subtend an angle of 90°

Let us find distance AB, AO, BO

`AB = sqrt((10 - 0)^2 + (0 - 100)^2)`

`= sqrt(100 + 10000)`

`= sqrt(10100)` units

`AO = sqrt((0 - 0)^2 + (0 - 100)^2)`

= `sqrt(100)` untis

Her we can see that, `AO^2 + BO^2 = AB^2`

Therefore, ΔAOB is a right angled triangle with AB being the hypotenuse.

So the angle subtended at the origin by the giving line segment is 90°

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Co-Ordinate Geometry - Exercise 6.2 [पृष्ठ १७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 6 Co-Ordinate Geometry
Exercise 6.2 | Q 53 | पृष्ठ १७
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×