मराठी

In What Ratio is the Line Segment Joining the Points (-2,-3) and (3, 7) Divided by the Y-axis? Also, Find the Coordinates of the Point of Division. - Mathematics

Advertisements
Advertisements

प्रश्न

In what ratio is the line segment joining the points (-2,-3) and (3, 7) divided by the y-axis? Also, find the coordinates of the point of division.

उत्तर

The ratio in which the y-axis divides two points `(x_1,y_1)` and (x_2,y_2) is λ : 1

The coordinates of the point dividing two points `(x_1,y_1)` and `(x_2, y_2)` in the ratio m:n is given as,

`(x,y) = (((lambdax_2+ x_1)/(lambda + 1))"," ((lambday_2 + y_1)/(lambda +1)))` where `lambda = m/n`

Here the two given points are A(-2,-3) and B(3,7).

Since the point is on the y-axis so, x coordinate is 0.

`(3lambda - 2)/1 = 0`

`=> lambda = 2/3`

Thus the given points are divided by the y-axis in the ratio 2:3

The coordinates of this point (x, y) can be found by using the earlier mentioned formula.

`(x,y) = (((2/3(3) + (-2))/(2/3 + 1))","((2/3(7) + (-3))/(2/3 + 1)))`

`(x,y) = ((((6 - 2(3))/3)/((2+3)/3)) "," (((14 - 3(3))/3)/((2+3)/3)))`

`(x,y) = ((0/5)","(5/5))`

(x,y) = (0,1)

Thus the co-ordinates of the point which divides the given points in the required ratio are (0,1)

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Co-Ordinate Geometry - Exercise 6.3 [पृष्ठ २९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 6 Co-Ordinate Geometry
Exercise 6.3 | Q 11.1 | पृष्ठ २९

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

On which axis do the following points lie?

S(0,5)


Find the centre of the circle passing through (5, -8), (2, -9) and (2, 1).


Find the coordinates of the point which divides the line segment joining (−1,3) and (4, −7) internally in the ratio 3 : 4


Find the points of trisection of the line segment joining the points:

(3, -2) and (-3, -4)


`"Find the ratio in which the poin "p (3/4 , 5/12) " divides the line segment joining the points "A (1/2,3/2) and B (2,-5).`


If the vertices of ΔABC  be A(1, -3) B(4, p) and C(-9, 7) and its area is 15 square units, find the values of p


Find the coordinates of the points of trisection of the line segment joining the points (3, –2) and (–3, –4) ?


Find the value of k, if the points A(7, −2), B (5, 1) and (3, 2k) are collinear.

 

What is the area of the triangle formed by the points O (0, 0), A (6, 0) and B (0, 4)?

 

The distance between the points (a cos 25°, 0) and (0, a cos 65°) is


The coordinates of the point on X-axis which are equidistant from the points (−3, 4) and (2, 5) are


The line segment joining points (−3, −4), and (1, −2) is divided by y-axis in the ratio. 


If the centroid of the triangle formed by the points (a, b), (b, c) and (c, a) is at the origin, then a3 b3 + c3 =


The distance of the point (4, 7) from the x-axis is


If A(x, 2), B(−3, −4) and C(7, −5) are collinear, then the value of x is


Find the coordinates of the point which lies on x and y axes both.


If the points P(1, 2), Q(0, 0) and R(x, y) are collinear, then find the relation between x and y.

Given points are P(1, 2), Q(0, 0) and R(x, y).

The given points are collinear, so the area of the triangle formed by them is `square`.

∴ `1/2 |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)| = square`

`1/2 |1(square) + 0(square) + x(square)| = square`

`square + square + square` = 0

`square + square` = 0

`square = square`

Hence, the relation between x and y is `square`.


The distance of the point (3, 5) from x-axis (in units) is ______.


Assertion (A): Mid-point of a line segment divides the line segment in the ratio 1 : 1

Reason (R): The ratio in which the point (−3, k) divides the line segment joining the points (− 5, 4) and (− 2, 3) is 1 : 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×