Advertisements
Advertisements
प्रश्न
The line segment joining points (−3, −4), and (1, −2) is divided by y-axis in the ratio.
पर्याय
1 : 3
2 : 3
3 : 1
2 : 3
उत्तर
3 : 1
Explanation:
Let P(0, y) be the point of intersection of y-axis with the line segment joining A (−3,−4) and B (1, −2) which divides the line segment AB in the ratio λ : 1.
Now according to the section formula if point a point P divides a line segment joining` A (x_1, y_1) "and" B (x_2, y_2)` in the ratio m : n internally than,
`P(x , y ) = ((nx_1+mx_2)/(m+n) , (ny_1+my_2)/(m+n))`
Now we will use section formula as,
`(0 , y) = ((lambda -3)/(lambda + 1) , (-2lambda -4)/(lambda+1))`
Now equate the x component on both the sides,
`(lambda - 3 ) /(lambda +1) = 0`
On further simplification,
`lambda = 3`
So y-axis divides AB in the ratio `3/1`.
APPEARS IN
संबंधित प्रश्न
The coordinates of the point P are (−3, 2). Find the coordinates of the point Q which lies on the line joining P and origin such that OP = OQ.
Find a point on the x-axis which is equidistant from the points (7, 6) and (−3, 4).
Find the coordinates of the point where the diagonals of the parallelogram formed by joining the points (-2, -1), (1, 0), (4, 3) and(1, 2) meet
Find the ratio in which the line segment joining (-2, -3) and (5, 6) is divided by x-axis Also, find the coordinates of the point of division in each case.
Show that the following points are the vertices of a square:
A (6,2), B(2,1), C(1,5) and D(5,6)
Show that the following points are the vertices of a square:
A (0,-2), B(3,1), C(0,4) and D(-3,1)
If the point `P (1/2,y)` lies on the line segment joining the points A(3, -5) and B(-7, 9) then find the ratio in which P divides AB. Also, find the value of y.
Find the possible pairs of coordinates of the fourth vertex D of the parallelogram, if three of its vertices are A(5, 6), B(1, –2) and C(3, –2).
Mark the correct alternative in each of the following:
The point of intersect of the coordinate axes is
The ordinate of any point on x-axis is
Show that the points (−4, −1), (−2, −4) (4, 0) and (2, 3) are the vertices points of a rectangle.
Find the value(s) of k for which the points (3k − 1, k − 2), (k, k − 7) and (k − 1, −k − 2) are collinear.
If the points A(−2, 1), B(a, b) and C(4, −1) ae collinear and a − b = 1, find the values of aand b.
If the points (k, 2k), (3k, 3k) and (3, 1) are collinear, then k
The distance of the point (4, 7) from the x-axis is
Which of the points P(-1, 1), Q(3, - 4), R(1, -1), S (-2, -3), T(-4, 4) lie in the fourth quadrant?
Find the coordinates of point A, where AB is a diameter of the circle with centre (–2, 2) and B is the point with coordinates (3, 4).
If point P is midpoint of segment joining point A(– 4, 2) and point B(6, 2), then the coordinates of P are ______
Point (–3, 5) lies in the ______.