Advertisements
Advertisements
प्रश्न
If the centroid of a triangle is (1, 4) and two of its vertices are (4, −3) and (−9, 7), then the area of the triangle is
पर्याय
183 sq. units
- \[\frac{183}{2}\] sq. units
366 sq. units
- \[\frac{183}{4}\] sq. units
उत्तर
We have to find the co-ordinates of the third vertex of the given triangle. Let the co-ordinates of the third vertex be ( x , y) .
The co-ordinates of other two vertices are (4,−3) and (−9, 7)
The co-ordinate of the centroid is (1, 4)
We know that the co-ordinates of the centroid of a triangle whose vertices are `(x_1 ,y_1 ) , (x_2,y_2),(x_3,y_3)` is
`((x_1+x_2 +x_3)/3 , (y_1 + y_2+y_3)/3)`
So,
`(1 , 4) = ((x+4-9)/3 , (y-3+7)/3)`
Compare individual terms on both the sides- `(x - 5)/3 = 1`
So,
x = 8
Similarly,
`(y+ 4 )/3 = 4`
So,
y = 8
So the co-ordinate of third vertex is (8, 8)
In general if `A (x_1 , y_1) ;B(x_2 , y_2 ) ;C(x_3 , y_3)` are non-collinear points then are of the triangle formed is given by-,
`ar (Δ ABC ) = 1/2 |x_1(y_2 - y_3 ) +x_2 (y_3 - y_1) + x_3 (y_1 - y_2)|`
So,
`ar (ΔABC ) = 1/2 |4(7-8)-9(8+3)+8(-3-7)|`
`= 1/2 | -4-99-80|`
`= 183/2`
APPEARS IN
संबंधित प्रश्न
A (3, 2) and B (−2, 1) are two vertices of a triangle ABC whose centroid G has the coordinates `(5/3,-1/3)`Find the coordinates of the third vertex C of the triangle.
Determine the ratio in which the point (-6, a) divides the join of A (-3, 1) and B (-8, 9). Also, find the value of a.
Find the co-ordinates of the point which divides the join of A(-5, 11) and B(4,-7) in the ratio 7 : 2
If (2, p) is the midpoint of the line segment joining the points A(6, -5) and B(-2,11) find the value of p.
The base QR of a n equilateral triangle PQR lies on x-axis. The coordinates of the point Q are (-4, 0) and origin is the midpoint of the base. Find the coordinates of the points P and R.
Find the area of quadrilateral ABCD whose vertices are A(-3, -1), B(-2,-4) C(4,-1) and D(3,4)
If the point P(k-1, 2) is equidistant from the points A(3,k) and B(k,5), find the value of k.
If the points A (2,3), B (4,k ) and C (6,-3) are collinear, find the value of k.
Find the coordinates of the points of trisection of the line segment joining the points (3, –2) and (–3, –4) ?
Mark the correct alternative in each of the following:
The point of intersect of the coordinate axes is
If P ( 9a -2 , - b) divides the line segment joining A (3a + 1 , - 3 ) and B (8a, 5) in the ratio 3 : 1 , find the values of a and b .
Show that A (−3, 2), B (−5, −5), C (2,−3), and D (4, 4) are the vertices of a rhombus.
If the points A(1, –2), B(2, 3) C(a, 2) and D(– 4, –3) form a parallelogram, find the value of a and height of the parallelogram taking AB as base.
Two vertices of a triangle have coordinates (−8, 7) and (9, 4) . If the centroid of the triangle is at the origin, what are the coordinates of the third vertex?
The length of a line segment joining A (2, −3) and B is 10 units. If the abscissa of B is 10 units, then its ordinates can be
What is the nature of the line which includes the points (-5, 5), (6, 5), (-3, 5), (0, 5)?
If the perpendicular distance of a point P from the x-axis is 5 units and the foot of the perpendicular lies on the negative direction of x-axis, then the point P has ______.
Point (3, 0) lies in the first quadrant.
Statement A (Assertion): If the coordinates of the mid-points of the sides AB and AC of ∆ABC are D(3, 5) and E(–3, –3) respectively, then BC = 20 units.
Statement R (Reason): The line joining the mid-points of two sides of a triangle is parallel to the third side and equal to half of it.
The distance of the point (–4, 3) from y-axis is ______.