मराठी

If the Quadratic Equation `Px^2-2sqrt5px+15=0` Has Two Equal Roots Then Find the Value of P. - Mathematics

Advertisements
Advertisements

प्रश्न

If the quadratic equation `px^2-2sqrt5px+15=0`  has two equal roots then find the value of p.  

उत्तर

It is given that the quadratic equation `px^2-2sqrt5px+15=0` has two equal roots. 

∴`D=0` 

⇒`(-2sqrt5p)^2-4xxpxx15=0` 

⇒`20p^2-60p=0` 

⇒` 20p(p-3)=0` 

⇒`p=0  or  p-3=0` 

⇒`p=0  or p=3` 

For `p=0`, we get `15=0` which is not true. 

∴`p≠0` 

Hence, the value of p is 3. 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Quadratic Equations - Exercises 6

APPEARS IN

आर एस अग्रवाल Mathematics [English] Class 10
पाठ 10 Quadratic Equations
Exercises 6 | Q 39

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

In the equation `ax^2+bx+c=0` it is given that `D=(b^2-4ac)>0`  

equation are

(a) real and equal (b) real and unequal (c) imaginary (d) none of these


If the equation `x^2+5kx+16=0` has no real roots then   

(a)`k>8/5`                          (b) `k(-8)/5`  

(c)` (-8)/5<k<8/5`                         (d)  None Of these


For what value of k, the equation `kx^2-6x2=0` has real roots?  

(a) `k≤-9/2`                     (b)`k≥-9/2` 

(c)` k≤-2`                         (d)  None of these 


The sum of two natural numbers is 8 and their product is 15., Find the numbers. 


If 460 is divided by a natural number, quotient is 6 more than five times the divisor and remainder is 1. Find quotient and divisor.


Choose the correct answer for the following question.

Out of the following equations, find the equation having the sum of its roots –5.


Solve the following quadratic equation.

m2 + 5m + 5 = 0


If 3x + 5y = 9 and 5x + 3y = 7 find the value of x + y. 


Find c if the system of equations cx+3y+(3 - c ) = 0, 12x + cy - c = 0 has infinitely many solutions?


In the adjoining fig. `square` ABCD is a trapezium AB || CD and its area is 33 cm2. From the information given in the figure find the lengths of all sides of the `square` ABCD. Fill in the empty boxes to get the solution.

Solution: `square` ABCD is a trapezium.

AB || CD

`"A"(square "ABCD") = 1/2 ("AB" + "CD") xx`______

33 = `1/2 ("x" + 2"x" + 1) xx `______

∴ ______ = (3x + 1) × ______

∴ 3x2 +______ − ______ = 0

∴ 3x(______) + 10(______) = 0

∴ (3x + 10) (______) = 0

∴ (3x + 10) = 0 or ______ = 0

∴ x = `-10/3` or x = ______

But length is never negative.

∴ `"x" ≠ -10/3`

∴ x = ______

AB = ______, CD = ______, AD = BC = ______


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×