मराठी

If the Ratio of Volumes of Two Spheres is 1 : 8, Then the Ratio of Their Surface Areas is - Mathematics

Advertisements
Advertisements

प्रश्न

If the ratio of volumes of two spheres is 1 : 8, then the ratio of their surface areas is 

पर्याय

  • 1 : 2

  • 1 : 4

  • 1 : 8

  • 1 : 16

MCQ

उत्तर

Here, we are given that the ratio of the two spheres of ratio 1:8

Let us take,

The radius of 1st sphere = r1

The radius of 1st sphere = r2

So,

Volume of 1st sphere (V1) =  `4/3 pi r_1^3`

Volume of 2nd sphere (V2) = `4/3 pi r_2^3`

Now,  `V_1/V_2 = 1/8`

`((4/3 pi r_1^3))/((4/3 pi r_2^1)) = 1/8`

           `r_1^3/r_2^3 = 1/8`  

          `r_1/r_2 = 3sqrt(1/8)`

          `r_1/r_2 = 1/2`                .............(1)

Now, let us find the surface areas of the two spheres

Surface area of 1st sphere (S1) =  `4 pi r_1^2`

Surface area of 2nd sphere (S2) = `4 pi r_2^2`

So, Ratio of the surface areas,

`S_1/S_2 = (4pir_1^2)/(4 pi r_2^2)`

        `=r_1^2/r_2^2`

       ` = (r_1/r_2)^2`

Using (1), we get,

`S_1 /S_2 = ( r_1/r_2)^2`

          `= (1/2)^2`

         `=(1/4)`

Therefore, the ratio of the spheres is 1 : 4 .

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 21: Surface Areas and Volume of a Sphere - Exercise 21.4 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
पाठ 21 Surface Areas and Volume of a Sphere
Exercise 21.4 | Q 7 | पृष्ठ २६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×