मराठी

If tan α, tan β are the roots of the equation x2 + px + q = 0 (p ≠ 0), then ______. -

Advertisements
Advertisements

प्रश्न

If tan α, tan β are the roots of the equation x2 + px + q = 0 (p ≠ 0), then ______.

पर्याय

  • sin2(α + β) + p sin(α + β) cos(α + β) + q cos2(α + β) = q

  • tan(α + β) = `q/(p - 1)`

  • cos(α + β) = 1 – q

  • sin(α + β) = – p

MCQ
रिकाम्या जागा भरा

उत्तर

If tan α, tan β are the roots of the equation x2 + px + q = 0 (p ≠ 0), then sin2(α + β) + p sin(α + β) cos(α + β) + q cos2(α + β) = q.

Explanation:

Since tan α, tan β are the roots of the equation x2 + px + q = 0. 

∴ tan α + tan β = – p, tan α tan β = q

∴ tan(α + β) = `(tan α + tan β)/(1 - tan α tan β) = p/(q - 1)`,

Also, when tan(α + β) = `p(q - 1)`.

LHS of the expression given in (a)

sin2(α + β) + p sin(α + β) cos(α + β) + q cos2(α + β)

= `(sin^2(α + β)cos^2(α + β))/(cos^2(α + β)) + (p sin(α + β))/(cos(α + β)) cos^2(α + β) + q cos^2(α + β)`

= cos2(α + β) [tan2(α + β) + p tan(α + β) + q]

= `1/(1 + tan^2(α + β))[p^2/(q - 1)^2 + p^2/(q - 1) + q]`

= `(q - 1)^2/((q - 1)^2 + p^2) [(p^2 + p^2(q - 1) + q(q - 1)^2)/(q - 1)^2]`

= `(q{p^2 + (q - 1)^2})/(p^2 + (q - 1)^2`

= q

= RHS of (a)

i.e. Relation given in (a) is satisfied.

shaalaa.com
Trigonometric Functions of Sum and Difference of Angles
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×