English

If tan α, tan β are the roots of the equation x2 + px + q = 0 (p ≠ 0), then ______. -

Advertisements
Advertisements

Question

If tan α, tan β are the roots of the equation x2 + px + q = 0 (p ≠ 0), then ______.

Options

  • sin2(α + β) + p sin(α + β) cos(α + β) + q cos2(α + β) = q

  • tan(α + β) = `q/(p - 1)`

  • cos(α + β) = 1 – q

  • sin(α + β) = – p

MCQ
Fill in the Blanks

Solution

If tan α, tan β are the roots of the equation x2 + px + q = 0 (p ≠ 0), then sin2(α + β) + p sin(α + β) cos(α + β) + q cos2(α + β) = q.

Explanation:

Since tan α, tan β are the roots of the equation x2 + px + q = 0. 

∴ tan α + tan β = – p, tan α tan β = q

∴ tan(α + β) = `(tan α + tan β)/(1 - tan α tan β) = p/(q - 1)`,

Also, when tan(α + β) = `p(q - 1)`.

LHS of the expression given in (a)

sin2(α + β) + p sin(α + β) cos(α + β) + q cos2(α + β)

= `(sin^2(α + β)cos^2(α + β))/(cos^2(α + β)) + (p sin(α + β))/(cos(α + β)) cos^2(α + β) + q cos^2(α + β)`

= cos2(α + β) [tan2(α + β) + p tan(α + β) + q]

= `1/(1 + tan^2(α + β))[p^2/(q - 1)^2 + p^2/(q - 1) + q]`

= `(q - 1)^2/((q - 1)^2 + p^2) [(p^2 + p^2(q - 1) + q(q - 1)^2)/(q - 1)^2]`

= `(q{p^2 + (q - 1)^2})/(p^2 + (q - 1)^2`

= q

= RHS of (a)

i.e. Relation given in (a) is satisfied.

shaalaa.com
Trigonometric Functions of Sum and Difference of Angles
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×