Advertisements
Advertisements
Question
If tan α, tan β are the roots of the equation x2 + px + q = 0 (p ≠ 0), then ______.
Options
sin2(α + β) + p sin(α + β) cos(α + β) + q cos2(α + β) = q
tan(α + β) = `q/(p - 1)`
cos(α + β) = 1 – q
sin(α + β) = – p
Solution
If tan α, tan β are the roots of the equation x2 + px + q = 0 (p ≠ 0), then sin2(α + β) + p sin(α + β) cos(α + β) + q cos2(α + β) = q.
Explanation:
Since tan α, tan β are the roots of the equation x2 + px + q = 0.
∴ tan α + tan β = – p, tan α tan β = q
∴ tan(α + β) = `(tan α + tan β)/(1 - tan α tan β) = p/(q - 1)`,
Also, when tan(α + β) = `p(q - 1)`.
LHS of the expression given in (a)
sin2(α + β) + p sin(α + β) cos(α + β) + q cos2(α + β)
= `(sin^2(α + β)cos^2(α + β))/(cos^2(α + β)) + (p sin(α + β))/(cos(α + β)) cos^2(α + β) + q cos^2(α + β)`
= cos2(α + β) [tan2(α + β) + p tan(α + β) + q]
= `1/(1 + tan^2(α + β))[p^2/(q - 1)^2 + p^2/(q - 1) + q]`
= `(q - 1)^2/((q - 1)^2 + p^2) [(p^2 + p^2(q - 1) + q(q - 1)^2)/(q - 1)^2]`
= `(q{p^2 + (q - 1)^2})/(p^2 + (q - 1)^2`
= q
= RHS of (a)
i.e. Relation given in (a) is satisfied.