मराठी

If the Difference Between an Exterior Angle of a Regular Polygon of 'N' Sides and an Exterior Angle of Another Regular Polygon of '(N + 1)' Sides is Equal to 4°; Find the Value of 'N'. - Mathematics

Advertisements
Advertisements

प्रश्न

If the difference between an exterior angle of a regular polygon of 'n' sides and an exterior angle of another regular polygon of '(n + 1)' sides is equal to 4°; find the value of 'n'.

बेरीज

उत्तर

Each exterior angle of a regular polygon of n sides  = `(360°)/"n"`

Each exterior angle of a regular polygon of (n + 1) sides = `(360°)/("n" + 1)`

Difference between the two exterior angles = 4°

`(360°)/"n" - (360°)/("n" + 1)` = 4°

`(90)/"n" - (90)/("n" + 1)` = 1

`(90"n" + 90 - 90"n")/("n"("n" + 1)` = 1

⇒ 90 = n2 + n
⇒ n2 + n - 90 = 0
⇒ n2 + 10n - 9n - 90 = 0
⇒ n(n + 10) - 9(n + 10) = 0
⇒ (n + 10)(n - 9) = 0
⇒ n + 10 = 0 or n - 9 = 0
⇒ n = -10 or n = 9
Since the number of sides cannot be negative, we have n = 9.

shaalaa.com
Names of Polygons
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Rectilinear Figures - Exercise 18.1

APPEARS IN

फ्रँक Mathematics [English] Class 9 ICSE
पाठ 18 Rectilinear Figures
Exercise 18.1 | Q 22
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×