मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

If the equations x2 − ax + b = 0 and x2 − ex + f = 0 have one root in common and if the second equation has equal roots, then prove that ae = 2(b + f) - Mathematics

Advertisements
Advertisements

प्रश्न

If the equations x2 − ax + b = 0 and x2 − ex + f = 0 have one root in common and if the second equation has equal roots, then prove that ae = 2(b + f)

बेरीज

उत्तर

The given quadratic equations are

x2 – ax + b = 0  .....(1)

x2 – ex + f = 0   .....(2)

Let α be the common root of the given quadratic equations (1) and (2)

Let α, β be the roots of x2 – ax + b = 0

Sum of the roots α + β = `−(− "a"/1)`

α + β = a   ......(3)

Product of the roots αβ = `"b"/1`

αβ = b   ......(4)

Given that the second equation has equal roots.

∴ The roots of the second equation are a, a

Sum of the roots α + α = `−(−"e"/1)`

2α = e   ......(5)

Product of the roots α.α = `"f"/1`

α2 = f   ......(6)

ae = (α + β)2α (Multiplying equations (3) and (5))

ae = 2α2 + 2αβ

ae= 2(f) + 2b

From equations (4) and (6)

ae= 2(f + b)

Hence proved.

shaalaa.com
Quadratic Functions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Basic Algebra - Exercise 2.4 [पृष्ठ ६२]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 2 Basic Algebra
Exercise 2.4 | Q 7 | पृष्ठ ६२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×