Advertisements
Advertisements
प्रश्न
If the lines 3x – 4y + 4 = 0 and 6x – 8y – 7 = 0 are tangents to a circle, then find the radius of the circle.
उत्तर
Given equation are 3x – 4y + 4 = 0
And 6x – 8y – 7 = 0
⇒ `3x - 4y - 7/2` = 0
Since `3/6 = (-4)/(-8) = 1/2` then the lines are parallel.
So, the distance between the parallel lines
= `|(c_1 - c_2)/sqrt(a^2 + b^2)|`
= `|(4 + 7/2)/sqrt((3)^2 + (-4)^2)|`
= `|(15/2)/5|`
= `3/2`
Diameter = `3/2`
∴ Radius = `3/4`.
APPEARS IN
संबंधित प्रश्न
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
`x^2/16 + y^2/9 = 1`
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
36x2 + 4y2 = 144
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.
4x2 + 9y2 = 36
Find the vertex, focus, axis, directrix and latus-rectum of the following parabola
y2 − 4y + 4x = 0
Find the vertex, focus, axis, directrix and latus-rectum of the following parabola
y2 + 4x + 4y − 3 = 0
Find the vertex, focus, axis, directrix and latus-rectum of the following parabola
y2 = 8x + 8y
Find the vertex, focus, axis, directrix and latus-rectum of the following parabola
y2 = 8x + 8y
Find the vertex, focus, axis, directrix and latus-rectum of the following parabola
y2 = 5x − 4y − 9
For the parabola y2 = 4px find the extremities of a double ordinate of length 8 p. Prove that the lines from the vertex to its extremities are at right angles.
Write the axis of symmetry of the parabola y2 = x.
Write the distance between the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0.
If the coordinates of the vertex and focus of a parabola are (−1, 1) and (2, 3) respectively, then write the equation of its directrix.
In the parabola y2 = 4ax, the length of the chord passing through the vertex and inclined to the axis at π/4 is
The directrix of the parabola x2 − 4x − 8y + 12 = 0 is
The vertex of the parabola (y − 2)2 = 16 (x − 1) is
Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:
x2 + 2y2 − 2x + 12y + 10 = 0
Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:
4x2 + y2 − 8x + 2y + 1 = 0
Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:
3x2 + 4y2 − 12x − 8y + 4 = 0
If the lengths of semi-major and semi-minor axes of an ellipse are 2 and \[\sqrt{3}\] and their corresponding equations are y − 5 = 0 and x + 3 = 0, then write the equation of the ellipse.
Write the eccentricity of the ellipse 9x2 + 5y2 − 18x − 2y − 16 = 0.
If the minor axis of an ellipse subtends an equilateral triangle with vertex at one end of major axis, then write the eccentricity of the ellipse.
If a latus rectum of an ellipse subtends a right angle at the centre of the ellipse, then write the eccentricity of the ellipse.
Find the equation of the ellipse with foci at (± 5, 0) and x = `36/5` as one of the directrices.
The equation of the circle in the first quadrant touching each coordinate axis at a distance of one unit from the origin is ______.
The equation of the circle which passes through the point (4, 5) and has its centre at (2, 2) is ______.