मराठी

Find the Centre, the Lengths of the Axes, Eccentricity, Foci of the Following Ellipse: X2 + 2y2 − 2x + 12y + 10 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse: 

x2 + 2y2 − 2x + 12y + 10 = 0 

उत्तर

\[ x^2 + 2 y^2 - 2x + 12y + 10 = 0\]
\[ \Rightarrow \left( x^2 - 2x \right) + 2\left( y^2 + 6y \right) = - 10\]
\[ \Rightarrow \left( x^2 - 2x + 1 \right) + 2\left( y^2 + 6y + 9 \right) = - 10 + 18 + 1\]
\[ \Rightarrow \left( x - 1 \right)^2 + 2 \left( y + 3 \right)^2 = 9\]
\[ \Rightarrow \frac{\left( x - 1 \right)^2}{9} + \frac{\left( y + 3 \right)^2}{\frac{9}{2}} = 9\]
\[\text{ Here }, x_1 = 1 \text{ and } y_1 = - 3\]
\[\text{ Also }, a = 3 \text{ and } b = \frac{3}{\sqrt{2}}\]
\[\text{ Centre }=\left( 1, - 3 \right)\]
\[\text{ Major axis }=2a\]
\[ \Rightarrow 2 \times 3 = 6\]
\[\text{ Minor axis }=2b\]
\[ \Rightarrow 2 \times \frac{3}{\sqrt{2}} = 3\sqrt{2}\]
\[e = \sqrt{1 - \frac{b^2}{a^2}}\]
\[ \Rightarrow e = \sqrt{1 - \frac{\frac{9}{2}}{9}}\]
\[ \Rightarrow e = \frac{1}{\sqrt{2}}\]
\[\text{ Foci } = \left( x_1 \pm ae, y_1 \right)\]
\[ = \left( 1 \pm \frac{3}{\sqrt{2}}, - 3 \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 26: Ellipse - Exercise 26.1 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 26 Ellipse
Exercise 26.1 | Q 10.1 | पृष्ठ २३

संबंधित प्रश्‍न

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/4 + y^2/25 = 1`


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/16 + y^2/9 = 1`


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/25 + y^2/100 = 1`


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/49 + y^2/36 = 1`


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/100 + y^2/400 = 1`


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

36x2 + 4y2 = 144


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

4x2 + 9y2 = 36


An arch is in the form of a semi-ellipse. It is 8 m wide and 2 m high at the centre. Find the height of the arch at a point 1.5 m from one end.


A rod of length 12 cm moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point P on the rod, which is 3 cm from the end in contact with the x-axis.


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola:

y2 = 8x 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola

y2 = 8x + 8


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

 y2 = 5x − 4y − 9 


For the parabola y2 = 4px find the extremities of a double ordinate of length 8 p. Prove that the lines from the vertex to its extremities are at right angles. 


Write the length of the chord of the parabola y2 = 4ax which passes through the vertex and is inclined to the axis at \[\frac{\pi}{4}\] 


Write the coordinates of the vertex of the parabola whose focus is at (−2, 1) and directrix is the line x + y − 3 = 0.

 


If the coordinates of the vertex and focus of a parabola are (−1, 1) and (2, 3) respectively, then write the equation of its directrix. 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse: 

 x2 + 4y2 − 4x + 24y + 31 = 0 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse: 

3x2 + 4y2 − 12x − 8y + 4 = 0 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse: 

4x2 + 16y2 − 24x − 32y − 12 = 0 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse:

x2 + 4y2 − 2x = 0 


Find the equation of an ellipse whose foci are at (± 3, 0) and which passes through (4, 1).


If the lengths of semi-major and semi-minor axes of an ellipse are 2 and \[\sqrt{3}\] and their corresponding equations are y − 5 = 0 and x + 3 = 0, then write the equation of the ellipse. 


Write the eccentricity of the ellipse 9x2 + 5y2 − 18x − 2y − 16 = 0. 


If a latus rectum of an ellipse subtends a right angle at the centre of the ellipse, then write the eccentricity of the ellipse. 


The equation of the circle in the first quadrant touching each coordinate axis at a distance of one unit from the origin is ______.


The equation of the circle having centre (1, –2) and passing through the point of intersection of the lines 3x + y = 14 and 2x + 5y = 18 is ______.


The equation of the circle which passes through the point (4, 5) and has its centre at (2, 2) is ______.


Find the equation of a circle which touches both the axes and the line 3x – 4y + 8 = 0 and lies in the third quadrant.


Find the distance between the directrices of the ellipse `x^2/36 + y^2/20` = 1


The shortest distance from the point (2, –7) to the circle x2 + y2 – 14x – 10y – 151 = 0 is equal to 5.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×