मराठी

An arch is in the form of a semi-ellipse. It is 8 m wide and 2 m high at the centre. Find the height of the arch at a point 1.5 m from one end. - Mathematics

Advertisements
Advertisements

प्रश्न

An arch is in the form of a semi-ellipse. It is 8 m wide and 2 m high at the centre. Find the height of the arch at a point 1.5 m from one end.

बेरीज

उत्तर

% In the figure, ELF is an arch whose width EF = 8 m and height = 2 m.

Let OX, OY be the coordinate axis. ELF is an ellipse with a = 4, b = 2

∴ Equation of ellipse,

`x^2/4^2 + y^2/2^2 = 1`

or `x^2/16 + y^2/4 = 1`

A point Q is at a distance of 1.5 m from end F.

∴ Distance of Q from O = 4 – 1.5 = 2.5 m

Let the height of the arch at point Q be P.

∴ P(2.5, P) lies on the ellipse.

∴ `(2.5)^2/16 + p^2/4 = 1`

or `p^2/4 = 1 - 6.25/16 = 9.75/16`

`p^2 = 9.75/16 xx 4 = 9.75/4`

`p = sqrt9.75/2`

= `3.122/2`

= 1.56 m (approximately)

Hence, the height of the arch at point Q = 1.56 m (approximately).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Conic Sections - Miscellaneous Exercise [पृष्ठ २६४]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 11 Conic Sections
Miscellaneous Exercise | Q 4 | पृष्ठ २६४

संबंधित प्रश्‍न

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/25 + y^2/100 = 1`


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

`x^2/100 + y^2/400 = 1`


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

16x2 + y2 = 16


Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse.

4x2 + 9y2 = 36


A rod of length 12 cm moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point P on the rod, which is 3 cm from the end in contact with the x-axis.


Find the vertex, focus, axis, directrix and latus-rectum of the following parabolas 

y2 − 4y − 3x + 1 = 0 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola

y2 − 4y + 4x = 0 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

 y2 + 4x + 4y − 3 = 0 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola

y2 = 8x + 8y

 


Find the vertex, focus, axis, directrix and latus-rectum of the following parabola 

 4 (y − 1)2 = − 7 (x − 3) 


Write the axis of symmetry of the parabola y2 = x


Write the distance between the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0. 


Write the length of the chord of the parabola y2 = 4ax which passes through the vertex and is inclined to the axis at \[\frac{\pi}{4}\] 


Write the coordinates of the vertex of the parabola whose focus is at (−2, 1) and directrix is the line x + y − 3 = 0.

 


If the coordinates of the vertex and focus of a parabola are (−1, 1) and (2, 3) respectively, then write the equation of its directrix. 


The directrix of the parabola x2 − 4x − 8y + 12 = 0 is


The equation of the parabola with focus (0, 0) and directrix x + y = 4 is 


The vertex of the parabola (y − 2)2 = 16 (x − 1) is 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse: 

 x2 + 4y2 − 4x + 24y + 31 = 0 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse: 

4x2 + y2 − 8x + 2y + 1 = 0 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse: 

3x2 + 4y2 − 12x − 8y + 4 = 0 


Find the centre, the lengths of the axes, eccentricity, foci of the following ellipse: 

4x2 + 16y2 − 24x − 32y − 12 = 0 


A rod of length 12 m moves with its ends always touching the coordinate axes. Determine the equation of the locus of a point P on the rod, which is 3 cm from the end in contact with x-axis. 


Find the equation of the set of all points whose distances from (0, 4) are\[\frac{2}{3}\] of their distances from the line y = 9. 

 

Write the eccentricity of the ellipse 9x2 + 5y2 − 18x − 2y − 16 = 0. 


If S and S' are two foci of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] and B is an end of the minor axis such that ∆BSS' is equilateral, then write the eccentricity of the ellipse.


If the minor axis of an ellipse subtends an equilateral triangle with vertex at one end of major axis, then write the eccentricity of the ellipse. 


The equation of the circle having centre (1, –2) and passing through the point of intersection of the lines 3x + y = 14 and 2x + 5y = 18 is ______.


The equation of the ellipse whose centre is at the origin and the x-axis, the major axis, which passes through the points (–3, 1) and (2, –2) is ______.


If the lines 3x – 4y + 4 = 0 and 6x – 8y – 7 = 0 are tangents to a circle, then find the radius of the circle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×