मराठी

The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, - Mathematics

Advertisements
Advertisements

प्रश्न

The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle.

बेरीज

उत्तर

Let AOB be the cable of uniformly loaded suspension bridge. Let AL and BM be the longest wires of length 30 m each. Let OC be the shortest wire of length 6 m and LM be the roadway.

Now AL = BM = 30 m, OC = 6 m and

LM = 100 m

∴ LC = CM = `1/2` LM = 50 m

Let O be the vertex and axis of the parabola be y-axis. So, the equation of parabola in standard form is x2 = 4ay

Coordinates of point B are (50, 24)

Since point B lies on the parabola, x2 = 4ay 

∴ (50)2 = 4a × 24

⇒ a = `2500/(4 xx 24)`

= `625/6`

So, equation of parabola is

x2 = `(4 xx 625)/24 y` = x2 = `625/6 y`

Let length of the supporting wire PQ at a distance of 18 m be h.

∴ OR = 18 m and PR = PQ - QR = h - 6.

Coordinates of point P are (18, h - 6)

Since the point P lies on parabola x2 = `625/6 y`

∴ (18)2 = `625/6 (h - 6)`

= 324 × 6 = 625h - 3750

= 625h = 1944 + 3750

= h = `5694/625`

= 9.11 m approx.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Conic Sections - Miscellaneous Exercise [पृष्ठ २६४]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 11 Conic Sections
Miscellaneous Exercise | Q 3 | पृष्ठ २६४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

y2 = – 8x


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0); focus (3, 0)


If a parabolic reflector is 20 cm in diameter and 5 cm deep, find the focus.


An arch is in the form of a parabola with its axis vertical. The arch is 10 m high and 5 m wide at the base. How wide is it 2 m from the vertex of the parabola?


An equilateral triangle is inscribed in the parabola y2 = 4 ax, where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.


Find the equation of the parabola whose: 

focus is (3, 0) and the directrix is 3x + 4y = 1


Find the equation of the parabola whose: 

 focus is (1, 1) and the directrix is x + y + 1 = 0


Find the equation of the parabola whose: 

 focus is (2, 3) and the directrix x − 4y + 3 = 0.


Find the equation of the parabola if 

 the focus is at (−6, −6) and the vertex is at (−2, 2)


Find the equation of the parabola if 

the focus is at (0, −3) and the vertex is at (0, 0) 


Find the equation of the parabola if the focus is at (0, −3) and the vertex is at (−1, −3)


Find the equation of the parabola if the focus is at (a, 0) and the vertex is at (a', 0) 


At what point of the parabola x2 = 9y is the abscissa three times that of ordinate? 


Find the equation of a parabola with vertex at the origin, the axis along x-axis and passing through (2, 3).


Find the equation of a parabola with vertex at the origin and the directrix, y = 2. 


Find the equation of the parabola whose focus is (5, 2) and having vertex at (3, 2). 


The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest wire being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle. 


If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.  


Write the equation of the directrix of the parabola x2 − 4x − 8y + 12 = 0. 


Write the equation of the parabola with focus (0, 0) and directrix x + y − 4 = 0.


PSQ is a focal chord of the parabola y2 = 8x. If SP = 6, then write SQ


The parametric equations of a parabola are x = t2 + 1, y = 2t + 1. The cartesian equation of its directrix is 


The line 2x − y + 4 = 0 cuts the parabola y2 = 8x in P and Q. The mid-point of PQ is


The equation 16x2 + y2 + 8xy − 74x − 78y + 212 = 0 represents 


If the coordinates of the vertex and the focus of a parabola are (−1, 1) and (2, 3) respectively, then the equation of its directrix is 


The locus of the points of trisection of the double ordinates of a parabola is a 


The equation of the directrix of the parabola whose vertex and focus are (1, 4) and (2, 6) respectively is 


An equilateral triangle is inscribed in the parabola y2 = 4ax whose one vertex is at the vertex of the parabola. Find the length of the side of the triangle.


The equation of the parabola whose focus is the point (2, 3) and directrix is the line x – 4y + 3 = 0 is ______.


If the line y = mx + 1 is tangent to the parabola y2 = 4x then find the value of m.


Find the equation of the following parabolas:

Directrix x = 0, focus at (6, 0)


Find the equation of the following parabolas:

Vertex at (0, 4), focus at (0, 2)


The equation of the ellipse whose focus is (1, –1), the directrix the line x – y – 3 = 0 and eccentricity `1/2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×