Advertisements
Advertisements
प्रश्न
The equation of the ellipse whose focus is (1, –1), the directrix the line x – y – 3 = 0 and eccentricity `1/2` is ______.
पर्याय
7x2 + 2xy + 7y2 – 10x + 10y + 7 = 0
7x2 + 2xy + 7y2 – 10x + 10y + 7 = 0
7x2 + 2xy + 7y2 + 10x – 10y – 7 = 0
None
उत्तर
The equation of the ellipse whose focus is (1, –1), the directrix the line x – y – 3 = 0 and eccentricity `1/2` is 7x2 + 2xy + 7y2 – 10x + 10y + 7 = 0.
Explanation:
Given that focus of the ellipse is (1, – 1)
And the equation of the directrix is x – y – 3 = 0
And e = `1/2`.
Let P(x, y) by any point on the parabola
∴ `"PF"/("Distance of the point P from the directrix")` = e
= `sqrt((x - 1)^2 + (y + 1)^2)/|(x - y - 3)/sqrt((1)^2 + (-1)^2)| = 1/2`
⇒ `2sqrt(x^2 + 1 - 2x + y^2 + 1 + 2y) = |(x - y - 3)/sqrt(2)|`
Squaring both sides, we have
⇒ `4(x^2 + y^2 - 2x + 2y + 2) = (x^2 + y^2 + 9 - 2xy - 6y - 6x)/2`
⇒ 8x2 + 8y2 – 16x + 16y + 16 = x2 + y2 – 2xy + 6y – 6x + 9
⇒ 7x2 + 7y2 + 2xy – 10x + 10y + 7 = 0
APPEARS IN
संबंधित प्रश्न
Find the equation of the parabola that satisfies the following condition:
Focus (6, 0); directrix x = –6
Find the equation of the parabola that satisfies the following condition:
Vertex (0, 0); focus (3, 0)
The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle.
Find the equation of the parabola whose:
focus is (3, 0) and the directrix is 3x + 4y = 1
Find the equation of the parabola whose:
focus is (0, 0) and the directrix 2x − y − 1 = 0
Find the equation of the parabola whose:
focus is (2, 3) and the directrix x − 4y + 3 = 0.
Find the equation of the parabola whose focus is the point (2, 3) and directrix is the line x − 4y + 3 = 0. Also, find the length of its latus-rectum.
Find the equation of the parabola if
the focus is at (−6, −6) and the vertex is at (−2, 2)
Find the equation of the parabola if
the focus is at (0, −3) and the vertex is at (0, 0)
Find the equation of the parabola if the focus is at (0, −3) and the vertex is at (−1, −3)
Find the equation of the parabola if the focus is at (a, 0) and the vertex is at (a', 0)
Find the equations of the lines joining the vertex of the parabola y2 = 6x to the point on it which have abscissa 24.
Find the coordinates of points on the parabola y2 = 8x whose focal distance is 4.
If the line y = mx + 1 is tangent to the parabola y2 = 4x, then find the value of m.
Write the equation of the parabola with focus (0, 0) and directrix x + y − 4 = 0.
PSQ is a focal chord of the parabola y2 = 8x. If SP = 6, then write SQ.
The equation of the parabola whose vertex is (a, 0) and the directrix has the equation x + y = 3a, is
The parametric equations of a parabola are x = t2 + 1, y = 2t + 1. The cartesian equation of its directrix is
The locus of the points of trisection of the double ordinates of a parabola is a
The equation of the directrix of the parabola whose vertex and focus are (1, 4) and (2, 6) respectively is
The equations of the lines joining the vertex of the parabola y2 = 6x to the points on it which have abscissa 24 are ______.
The equation of the parabola whose focus is the point (2, 3) and directrix is the line x – 4y + 3 = 0 is ______.
Find the equation of the following parabolas:
Directrix x = 0, focus at (6, 0)
Find the equation of the following parabolas:
Focus at (–1, –2), directrix x – 2y + 3 = 0
Find the equation of the set of all points the sum of whose distances from the points (3, 0) and (9, 0) is 12.
Find the equation of the set of all points whose distance from (0, 4) are `2/3` of their distance from the line y = 9.