मराठी

Find the Equation of the Parabola Whose Focus is the Point (2, 3) and Directrix is the Line X − 4y + 3 = 0. Also, Find the Length of Its Latus-rectum. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the parabola whose focus is the point (2, 3) and directrix is the line x − 4y + 3 = 0. Also, find the length of its latus-rectum.

 

उत्तर

Let P (xy) be any point on the parabola whose focus is (2, 3) and the directrix is x − 4y+ 3 = 0. 

Draw PM perpendicular to x − 4y 3=0.
Then, we have: 

\[SP = PM\]
\[ \Rightarrow S P^2 = P M^2 \]
\[ \Rightarrow \left( x - 2 \right)^2 + \left( y - 3 \right)^2 = \left( \frac{x - 4y + 3}{\sqrt{1 + 16}} \right)^2 \]
\[ \Rightarrow \left( x - 2 \right)^2 + \left( y - 3 \right)^2 = \left( \frac{x - 4y + 3}{\sqrt{17}} \right)^2 \]
\[ \Rightarrow 17\left( x^2 + 4 - 4x + y^2 - 6y + 9 \right) = x^2 + 16 y^2 + 9 - 8xy - 24y + 6x\]
\[ \Rightarrow \left( 17 x^2 - 68x + 17 y^2 - 102y + 13 \times 17 \right) = x^2 + 16 y^2 + 9 - 8xy - 24y + 6x\]
\[ \Rightarrow 16 x^2 + y^2 + 8xy - 74x - 78y + 212 = 0\]

Length of the latus rectum = 2(Length of the perpendicular from the focus on the directrix)
                                           = 2(Length of the perpendicular from (2, 3) on the directrix)
                                           =\[2\left| \frac{2 - 12 + 3}{\sqrt{16 + 1}} \right| = 2\left| \frac{- 7}{\sqrt{17}} \right| = 2\left( \frac{7}{\sqrt{17}} \right) = \frac{14}{\sqrt{17}}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 25: Parabola - Exercise 25.1 [पृष्ठ २४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 25 Parabola
Exercise 25.1 | Q 2 | पृष्ठ २४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

x2 = 6y


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0); focus (3, 0)


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0) focus (–2, 0)


The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle.


An equilateral triangle is inscribed in the parabola y2 = 4 ax, where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.


Find the equation of the parabola whose: 

focus is (3, 0) and the directrix is 3x + 4y = 1


Find the equation of the parabola whose: 

 focus is (1, 1) and the directrix is x + y + 1 = 0


Find the equation of the parabola whose: 

 focus is (2, 3) and the directrix x − 4y + 3 = 0.


Find the equation of the parabola if 

 the focus is at (−6, −6) and the vertex is at (−2, 2)


Find the equation of the parabola if 

the focus is at (0, −3) and the vertex is at (0, 0) 


Find the equation of the parabola if  the focus is at (0, 0) and vertex is at the intersection of the lines x + y = 1 and x − y = 3. 


At what point of the parabola x2 = 9y is the abscissa three times that of ordinate? 


Find the equation of a parabola with vertex at the origin, the axis along x-axis and passing through (2, 3).


Find the equation of a parabola with vertex at the origin and the directrix, y = 2. 


The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest wire being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle. 


Find the equations of the lines joining the vertex of the parabola y2 = 6x to the point on it which have abscissa 24. 


Find the coordinates of points on the parabola y2 = 8x whose focal distance is 4.   


If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.  


PSQ is a focal chord of the parabola y2 = 8x. If SP = 6, then write SQ


Write the equation of the parabola whose vertex is at (−3,0) and the directrix is x + 5 = 0. 


The parametric equations of a parabola are x = t2 + 1, y = 2t + 1. The cartesian equation of its directrix is 


The equation 16x2 + y2 + 8xy − 74x − 78y + 212 = 0 represents 


The equation of the directrix of the parabola whose vertex and focus are (1, 4) and (2, 6) respectively is 


The equation of the parabola whose focus is (1, −1) and the directrix is x + y + 7 = 0 is


The equations of the lines joining the vertex of the parabola y2 = 6x to the points on it which have abscissa 24 are ______.


The equation of the parabola whose focus is the point (2, 3) and directrix is the line x – 4y + 3 = 0 is ______.


If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.


If the line y = mx + 1 is tangent to the parabola y2 = 4x then find the value of m.


Find the equation of the following parabolas:

Directrix x = 0, focus at (6, 0)


Find the equation of the following parabolas:

Vertex at (0, 4), focus at (0, 2)


Find the equation of the set of all points the sum of whose distances from the points (3, 0) and (9, 0) is 12.


Find the equation of the set of all points whose distance from (0, 4) are `2/3` of their distance from the line y = 9.


If the vertex of the parabola is the point (–3, 0) and the directrix is the line x + 5 = 0, then its equation is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×