Advertisements
Advertisements
Question
Find the equation of the parabola whose focus is the point (2, 3) and directrix is the line x − 4y + 3 = 0. Also, find the length of its latus-rectum.
Solution
Let P (x, y) be any point on the parabola whose focus is S (2, 3) and the directrix is x − 4y+ 3 = 0.
Draw PM perpendicular to x − 4y + 3=0.
Then, we have:
\[SP = PM\]
\[ \Rightarrow S P^2 = P M^2 \]
\[ \Rightarrow \left( x - 2 \right)^2 + \left( y - 3 \right)^2 = \left( \frac{x - 4y + 3}{\sqrt{1 + 16}} \right)^2 \]
\[ \Rightarrow \left( x - 2 \right)^2 + \left( y - 3 \right)^2 = \left( \frac{x - 4y + 3}{\sqrt{17}} \right)^2 \]
\[ \Rightarrow 17\left( x^2 + 4 - 4x + y^2 - 6y + 9 \right) = x^2 + 16 y^2 + 9 - 8xy - 24y + 6x\]
\[ \Rightarrow \left( 17 x^2 - 68x + 17 y^2 - 102y + 13 \times 17 \right) = x^2 + 16 y^2 + 9 - 8xy - 24y + 6x\]
\[ \Rightarrow 16 x^2 + y^2 + 8xy - 74x - 78y + 212 = 0\]
Length of the latus rectum = 2(Length of the perpendicular from the focus on the directrix)
= 2(Length of the perpendicular from (2, 3) on the directrix)
=\[2\left| \frac{2 - 12 + 3}{\sqrt{16 + 1}} \right| = 2\left| \frac{- 7}{\sqrt{17}} \right| = 2\left( \frac{7}{\sqrt{17}} \right) = \frac{14}{\sqrt{17}}\]
APPEARS IN
RELATED QUESTIONS
Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.
x2 = 6y
Find the equation of the parabola that satisfies the following condition:
Vertex (0, 0); focus (3, 0)
Find the equation of the parabola that satisfies the following condition:
Vertex (0, 0) passing through (2, 3) and axis is along x-axis
If a parabolic reflector is 20 cm in diameter and 5 cm deep, find the focus.
An equilateral triangle is inscribed in the parabola y2 = 4 ax, where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.
Find the equation of the parabola whose:
focus is (1, 1) and the directrix is x + y + 1 = 0
Find the equation of the parabola whose:
focus is (0, 0) and the directrix 2x − y − 1 = 0
Find the equation of the parabola if
the focus is at (−6, −6) and the vertex is at (−2, 2)
Find the equation of the parabola whose focus is (5, 2) and having vertex at (3, 2).
The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest wire being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle.
If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.
If the line y = mx + 1 is tangent to the parabola y2 = 4x, then find the value of m.
Write the equation of the directrix of the parabola x2 − 4x − 8y + 12 = 0.
PSQ is a focal chord of the parabola y2 = 8x. If SP = 6, then write SQ.
Write the equation of the parabola whose vertex is at (−3,0) and the directrix is x + 5 = 0.
The line 2x − y + 4 = 0 cuts the parabola y2 = 8x in P and Q. The mid-point of PQ is
The equation 16x2 + y2 + 8xy − 74x − 78y + 212 = 0 represents
If the coordinates of the vertex and the focus of a parabola are (−1, 1) and (2, 3) respectively, then the equation of its directrix is
The locus of the points of trisection of the double ordinates of a parabola is a
The equation of the directrix of the parabola whose vertex and focus are (1, 4) and (2, 6) respectively is
If V and S are respectively the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0, then SV =
The equation of the parabola whose focus is (1, −1) and the directrix is x + y + 7 = 0 is
An equilateral triangle is inscribed in the parabola y2 = 4ax whose one vertex is at the vertex of the parabola. Find the length of the side of the triangle.
If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.
Find the equation of the following parabolas:
Directrix x = 0, focus at (6, 0)
Find the equation of the set of all points the sum of whose distances from the points (3, 0) and (9, 0) is 12.
The equation of the parabola having focus at (–1, –2) and the directrix x – 2y + 3 = 0 is ______.
If the focus of a parabola is (0, –3) and its directrix is y = 3, then its equation is ______.
If the vertex of the parabola is the point (–3, 0) and the directrix is the line x + 5 = 0, then its equation is ______.