Advertisements
Advertisements
Question
Find the equation of the parabola whose focus is (5, 2) and having vertex at (3, 2).
Solution
Given:
The vertex and the focus of the parabola are (3, 2) and (5, 2), respectively.
∴ Slope of the axis of the parabola = 0
Slope of the directrix cannot be defined.
Let the directrix intersect the axis at K (r, s).
∴ \[\frac{r + 5}{2} = 3, \frac{s + 2}{2} = 2\]
\[ \Rightarrow r = 1, s = 2\]
Required equation of the directrix is \[x - 1 = 0\]
which can be rewritten as x = 1.
Let P (x, y) be any point on the parabola whose focus is S (5, 2) and the directrix is x =1
Draw PM perpendicular to x = 1.
Then, we have: \[SP = PM\]
\[ \Rightarrow S P^2 = P M^2 \]
\[ \Rightarrow \left( x - 5 \right)^2 + \left( y - 2 \right)^2 = \left( \frac{x - 1}{1} \right)^2 \]
\[ \Rightarrow x^2 + 25 - 10x + y^2 + 4 - 4y = x^2 + 1 - 2x\]
\[ \Rightarrow 25 - 10x + y^2 + 4 - 4y - 1 + 2x = 0\]
\[ \Rightarrow y^2 - 4y - 8x + 28 = 0\]
APPEARS IN
RELATED QUESTIONS
Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.
y2 = – 8x
Find the equation of the parabola that satisfies the following condition:
Focus (6, 0); directrix x = –6
Find the equation of the parabola that satisfies the following condition:
Focus (0, –3); directrix y = 3
Find the equation of the parabola that satisfies the following condition:
Vertex (0, 0) passing through (2, 3) and axis is along x-axis
Find the equation of the parabola that satisfies the following condition:
Vertex (0, 0), passing through (5, 2) and symmetric with respect to y-axis.
An arch is in the form of a parabola with its axis vertical. The arch is 10 m high and 5 m wide at the base. How wide is it 2 m from the vertex of the parabola?
Find the equation of the parabola whose:
focus is (3, 0) and the directrix is 3x + 4y = 1
Find the equation of the parabola whose:
focus is (1, 1) and the directrix is x + y + 1 = 0
Find the equation of the parabola if
the focus is at (0, −3) and the vertex is at (0, 0)
Find the equation of the parabola if the focus is at (0, −3) and the vertex is at (−1, −3)
Find the equation of the parabola if the focus is at (a, 0) and the vertex is at (a', 0)
Find the equation of a parabola with vertex at the origin, the axis along x-axis and passing through (2, 3).
Find the equation of a parabola with vertex at the origin and the directrix, y = 2.
The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest wire being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle.
Find the equations of the lines joining the vertex of the parabola y2 = 6x to the point on it which have abscissa 24.
Find the coordinates of points on the parabola y2 = 8x whose focal distance is 4.
If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.
Write the equation of the parabola with focus (0, 0) and directrix x + y − 4 = 0.
The equation of the parabola whose vertex is (a, 0) and the directrix has the equation x + y = 3a, is
The equation 16x2 + y2 + 8xy − 74x − 78y + 212 = 0 represents
The locus of the points of trisection of the double ordinates of a parabola is a
The equation of the directrix of the parabola whose vertex and focus are (1, 4) and (2, 6) respectively is
If V and S are respectively the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0, then SV =
Find the length of the line segment joining the vertex of the parabola y2 = 4ax and a point on the parabola where the line segment makes an angle θ to the x-axis.
Find the equation of the following parabolas:
Directrix x = 0, focus at (6, 0)
Find the equation of the following parabolas:
Vertex at (0, 4), focus at (0, 2)
Find the equation of the following parabolas:
Focus at (–1, –2), directrix x – 2y + 3 = 0
The line lx + my + n = 0 will touch the parabola y2 = 4ax if ln = am2.
The equation of the parabola having focus at (–1, –2) and the directrix x – 2y + 3 = 0 is ______.
The equation of the ellipse whose focus is (1, –1), the directrix the line x – y – 3 = 0 and eccentricity `1/2` is ______.