Advertisements
Advertisements
Question
The equation of the parabola whose vertex is (a, 0) and the directrix has the equation x + y = 3a, is
Options
x2 + y2 + 2xy + 6ax + 10ay + 7a2 = 0
x2 − 2xy + y2 + 6ax + 10ay − 7a2 = 0
x2 − 2xy + y2 − 6ax + 10ay − 7a2 = 0
none of these
Solution
x2 − 2xy + y2 + 6ax + 10ay − 7a2 = 0
Given:
The vertex is at (a, 0) and the directrix is the line x + y = 3a.
The slope of the line perpendicular to x + y = 3a is 1.
The axis of the parabola is perpendicular to the directrix and passes through the vertex.
∴ Equation of the axis of the parabola = \[y - 0 = 1\left( x - a \right)\] (1)
Intersection point of the directrix and the axis is the intersection point of (1) and x + y = 3a.
Let the intersection point be K.
Therefore, the coordinates of K are \[\left( 2a, a \right)\]
The vertex is the mid-point of the segment joining K and the focus (h, k).
∴ \[a = \frac{2a + h}{2}, 0 = \frac{a + k}{2}\]
\[h = 0, k = - a\]
Let P (x, y) be any point on the parabola whose focus is S (h, k) and the directrix is x + y= 3a.
Draw PM perpendicular to x + y = 3a.
Then, we have: \[SP = PM\]
\[ \Rightarrow S P^2 = P M^2 \]
\[ \Rightarrow \left( x - 0 \right)^2 + \left( y + a \right)^2 = \left( \frac{x + y - 3a}{\sqrt{2}} \right)^2 \]
\[ \Rightarrow x^2 + \left( y + a \right)^2 = \left( \frac{x + y - 3a}{\sqrt{2}} \right)^2 \]
\[ \Rightarrow 2 x^2 + 2 y^2 + 2 a^2 + 4ay = x^2 + y^2 + 9 a^2 + 2xy - 6ax - 6ay\]
\[ \Rightarrow x^2 + y^2 - 7 a^2 + 10ay + 6ax - 2xy = 0\]
APPEARS IN
RELATED QUESTIONS
Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.
x2 = 6y
Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.
y2 = – 8x
Find the equation of the parabola that satisfies the following condition:
Focus (6, 0); directrix x = –6
Find the equation of the parabola that satisfies the following condition:
Vertex (0, 0) passing through (2, 3) and axis is along x-axis
If a parabolic reflector is 20 cm in diameter and 5 cm deep, find the focus.
An arch is in the form of a parabola with its axis vertical. The arch is 10 m high and 5 m wide at the base. How wide is it 2 m from the vertex of the parabola?
An equilateral triangle is inscribed in the parabola y2 = 4 ax, where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.
Find the equation of the parabola whose:
focus is (3, 0) and the directrix is 3x + 4y = 1
Find the equation of the parabola whose:
focus is (0, 0) and the directrix 2x − y − 1 = 0
Find the equation of the parabola whose:
focus is (2, 3) and the directrix x − 4y + 3 = 0.
Find the equation of the parabola whose focus is the point (2, 3) and directrix is the line x − 4y + 3 = 0. Also, find the length of its latus-rectum.
Find the equation of the parabola if
the focus is at (−6, −6) and the vertex is at (−2, 2)
Find the equation of the parabola if the focus is at (a, 0) and the vertex is at (a', 0)
At what point of the parabola x2 = 9y is the abscissa three times that of ordinate?
Find the equation of a parabola with vertex at the origin, the axis along x-axis and passing through (2, 3).
Find the equation of a parabola with vertex at the origin and the directrix, y = 2.
The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest wire being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle.
Find the coordinates of points on the parabola y2 = 8x whose focal distance is 4.
Write the equation of the parabola whose vertex is at (−3,0) and the directrix is x + 5 = 0.
The parametric equations of a parabola are x = t2 + 1, y = 2t + 1. The cartesian equation of its directrix is
The equation 16x2 + y2 + 8xy − 74x − 78y + 212 = 0 represents
The equation of the directrix of the parabola whose vertex and focus are (1, 4) and (2, 6) respectively is
If V and S are respectively the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0, then SV =
The equation of the parabola whose focus is (1, −1) and the directrix is x + y + 7 = 0 is
The equation of the parabola whose focus is the point (2, 3) and directrix is the line x – 4y + 3 = 0 is ______.
Find the coordinates of a point on the parabola y2 = 8x whose focal distance is 4.
Find the length of the line segment joining the vertex of the parabola y2 = 4ax and a point on the parabola where the line segment makes an angle θ to the x-axis.
If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.
If the line y = mx + 1 is tangent to the parabola y2 = 4x then find the value of m.
Find the equation of the following parabolas:
Focus at (–1, –2), directrix x – 2y + 3 = 0
Find the equation of the set of all points whose distance from (0, 4) are `2/3` of their distance from the line y = 9.
The line lx + my + n = 0 will touch the parabola y2 = 4ax if ln = am2.
If the vertex of the parabola is the point (–3, 0) and the directrix is the line x + 5 = 0, then its equation is ______.