English

The Equation of the Parabola Whose Focus is (1, −1) and the Directrix is X + Y + 7 = 0 is - Mathematics

Advertisements
Advertisements

Question

The equation of the parabola whose focus is (1, −1) and the directrix is x + y + 7 = 0 is

Options

  •  x2 + y2 − 2xy − 18x − 10y = 0 

  •  x2 − 18x − 10y − 45 = 0 

  •  x2 + y2 − 18x − 10y − 45 = 0 

  •  x2 + y2 − 2xy − 18x − 10y − 45 = 0

     
MCQ

Solution

x2 + y2 − 2xy − 18x − 10y − 45 = 0 

Let P (xy) be any point on the parabola whose focus is S (1, −1) and the directrix is x + y+ 7 = 0. 

 

Draw PM perpendicular to x + y + 7 = 0.
Then, we have: 

\[SP = PM\]
\[ \Rightarrow S P^2 = P M^2 \]
\[ \Rightarrow \left( x - 1 \right)^2 + \left( y + 1 \right)^2 = \left( \frac{x + y + 7}{\sqrt{1 + 1}} \right)^2 \]
\[ \Rightarrow \left( x - 1 \right)^2 + \left( y + 1 \right)^2 = \left( \frac{x + y + 7}{\sqrt{2}} \right)^2 \]
\[ \Rightarrow 2\left( x^2 + 1 - 2x + y^2 + 1 + 2y \right) = x^2 + y^2 + 49 + 2xy + 14y + 14x\]
\[ \Rightarrow \left( 2 x^2 + 2 - 4x + 2 y^2 + 2 + 4y \right) = x^2 + y^2 + 49 + 2xy + 14y + 14x\]
\[ \Rightarrow x^2 + y^2 - 45 - 10y - 2xy - 18x = 0\] 

Hence, the required equation is x2 + y2 − 2xy − 18x − 10y − 45 = 0. 

shaalaa.com
  Is there an error in this question or solution?
Chapter 25: Parabola - Exercise 25.3 [Page 30]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 25 Parabola
Exercise 25.3 | Q 22 | Page 30

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

x2 = 6y


Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

y2 = – 8x


Find the equation of the parabola that satisfies the following condition:

Focus (6, 0); directrix x = –6


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0); focus (3, 0)


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0), passing through (5, 2) and symmetric with respect to y-axis.


An arch is in the form of a parabola with its axis vertical. The arch is 10 m high and 5 m wide at the base. How wide is it 2 m from the vertex of the parabola?


An equilateral triangle is inscribed in the parabola y2 = 4 ax, where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.


Find the equation of the parabola whose: 

 focus is (0, 0) and the directrix 2x − y − 1 = 0

 


Find the equation of the parabola if 

the focus is at (0, −3) and the vertex is at (0, 0) 


Find the equation of the parabola if  the focus is at (0, 0) and vertex is at the intersection of the lines x + y = 1 and x − y = 3. 


At what point of the parabola x2 = 9y is the abscissa three times that of ordinate? 


Find the equation of a parabola with vertex at the origin, the axis along x-axis and passing through (2, 3).


Find the equation of the parabola whose focus is (5, 2) and having vertex at (3, 2). 


The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest wire being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle. 


If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.  


If the line y = mx + 1 is tangent to the parabola y2 = 4x, then find the value of m


Write the equation of the parabola with focus (0, 0) and directrix x + y − 4 = 0.


PSQ is a focal chord of the parabola y2 = 8x. If SP = 6, then write SQ


The line 2x − y + 4 = 0 cuts the parabola y2 = 8x in P and Q. The mid-point of PQ is


The equation 16x2 + y2 + 8xy − 74x − 78y + 212 = 0 represents 


If the coordinates of the vertex and the focus of a parabola are (−1, 1) and (2, 3) respectively, then the equation of its directrix is 


The equation of the directrix of the parabola whose vertex and focus are (1, 4) and (2, 6) respectively is 


If V and S are respectively the vertex and focus of the parabola y2 + 6y + 2x + 5 = 0, then SV


Find the coordinates of a point on the parabola y2 = 8x whose focal distance is 4.


Find the length of the line segment joining the vertex of the parabola y2 = 4ax and a point on the parabola where the line segment makes an angle θ to the x-axis.


Find the equation of the following parabolas:

Directrix x = 0, focus at (6, 0)


Find the equation of the set of all points whose distance from (0, 4) are `2/3` of their distance from the line y = 9.


If the focus of a parabola is (0, –3) and its directrix is y = 3, then its equation is ______.


If the vertex of the parabola is the point (–3, 0) and the directrix is the line x + 5 = 0, then its equation is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×