English

Which of the following points lie on the parabola x2 = 4ay? - Mathematics

Advertisements
Advertisements

Question

Which of the following points lie on the parabola x2 = 4ay

Options

  • x = at2y = 2at 

  • x = 2aty = at

  • x = 2at2y = at 

     

  • x = 2aty = at

MCQ

Solution

 x = 2aty = at

Substituting x = 2aty = at2 in the given equation: 

\[\left( 2at \right)^2 = 4a\left( a t^2 \right)\]
\[ \Rightarrow 4 a^2 t^2 = 4 a^2 t^2\]

Hence, (2atat2) lies on the parabola x2 = 4ay.

shaalaa.com
  Is there an error in this question or solution?
Chapter 25: Parabola - Exercise 25.3 [Page 30]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 25 Parabola
Exercise 25.3 | Q 21 | Page 30

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

y2 = 12x


Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

x2 = – 16y


Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

y2 = 10x


Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

x2 = –9y


Find the area of the triangle formed by the lines joining the vertex of the parabola x2 = 12y to the ends of its latus rectum.


Find the area of the triangle formed by the lines joining the vertex of the parabola \[x^2 = 12y\]  to the ends of its latus rectum.


If b and c are lengths of the segments of any focal chord of the parabola y2 = 4ax, then write the length of its latus-rectum. 


(vii)  find the equation of the hyperbola satisfying the given condition:

foci (± 4, 0), the latus-rectum = 12


If the parabola y2 = 4ax passes through the point (3, 2), then find the length of its latus rectum. 


The vertex of the parabola (y + a)2 = 8a (x − a) is 


If the focus of a parabola is (−2, 1) and the directrix has the equation x + y = 3, then its vertex is 


The length of the latus-rectum of the parabola y2 + 8x − 2y + 17 = 0 is 


The vertex of the parabola x2 + 8x + 12y + 4 = 0 is


The length of the latus-rectum of the parabola 4y2 + 2x − 20y + 17 = 0 is 


The length of the latus-rectum of the parabola x2 − 4x − 8y + 12 = 0 is 


The focus of the parabola y = 2x2 + x is 


If the equation of the parabola is x2 = – 8y, find coordinates of the focus, the equation of the directrix and length of latus rectum.


If the latus rectum of an ellipse with axis along x-axis and centre at origin is 10, distance between foci = length of minor axis, then the equation of the ellipse is ______.


If the eccentricity of an ellipse is `5/8` and the distance between its foci is 10, then find latus rectum of the ellipse.


If the parabola y2 = 4ax passes through the point (3, 2), then the length of its latus rectum is ______.


The length of the latus rectum of the ellipse 3x2 + y2 = 12 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×