Advertisements
Advertisements
Question
At what point of the parabola x2 = 9y is the abscissa three times that of ordinate?
Solution
Putting x = 3y in the given equation of the parabola:
\[9 y^2 = 9y\]
\[ \Rightarrow 9y\left( y - 1 \right) = 0\]
\[ \Rightarrow y = 0, 1\]
At y = 0, x = 0
At y = 1, x = 3
Therefore, at (1, 3), the abscissa is three times that of the ordinate.
APPEARS IN
RELATED QUESTIONS
Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.
x2 = 6y
Find the equation of the parabola that satisfies the following condition:
Focus (6, 0); directrix x = –6
Find the equation of the parabola that satisfies the following condition:
Focus (0, –3); directrix y = 3
Find the equation of the parabola that satisfies the following condition:
Vertex (0, 0) passing through (2, 3) and axis is along x-axis
If a parabolic reflector is 20 cm in diameter and 5 cm deep, find the focus.
An arch is in the form of a parabola with its axis vertical. The arch is 10 m high and 5 m wide at the base. How wide is it 2 m from the vertex of the parabola?
The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle.
Find the equation of the parabola whose:
focus is (1, 1) and the directrix is x + y + 1 = 0
Find the equation of the parabola whose focus is the point (2, 3) and directrix is the line x − 4y + 3 = 0. Also, find the length of its latus-rectum.
Find the equation of the parabola if the focus is at (0, −3) and the vertex is at (−1, −3)
Find the equation of the parabola if the focus is at (a, 0) and the vertex is at (a', 0)
Find the equation of a parabola with vertex at the origin, the axis along x-axis and passing through (2, 3).
Find the equation of a parabola with vertex at the origin and the directrix, y = 2.
Find the equation of the parabola whose focus is (5, 2) and having vertex at (3, 2).
The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest wire being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle.
Find the equations of the lines joining the vertex of the parabola y2 = 6x to the point on it which have abscissa 24.
Find the coordinates of points on the parabola y2 = 8x whose focal distance is 4.
If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.
Write the equation of the directrix of the parabola x2 − 4x − 8y + 12 = 0.
Write the equation of the parabola with focus (0, 0) and directrix x + y − 4 = 0.
The equation of the parabola whose vertex is (a, 0) and the directrix has the equation x + y = 3a, is
The equation 16x2 + y2 + 8xy − 74x − 78y + 212 = 0 represents
If the coordinates of the vertex and the focus of a parabola are (−1, 1) and (2, 3) respectively, then the equation of its directrix is
The equations of the lines joining the vertex of the parabola y2 = 6x to the points on it which have abscissa 24 are ______.
The equation of the parabola whose focus is the point (2, 3) and directrix is the line x – 4y + 3 = 0 is ______.
Find the length of the line segment joining the vertex of the parabola y2 = 4ax and a point on the parabola where the line segment makes an angle θ to the x-axis.
If the line y = mx + 1 is tangent to the parabola y2 = 4x then find the value of m.
Find the equation of the following parabolas:
Directrix x = 0, focus at (6, 0)
Find the equation of the following parabolas:
Vertex at (0, 4), focus at (0, 2)
The equation of the parabola having focus at (–1, –2) and the directrix x – 2y + 3 = 0 is ______.
The equation of the ellipse whose focus is (1, –1), the directrix the line x – y – 3 = 0 and eccentricity `1/2` is ______.