English

If the line y = mx + 1 is tangent to the parabola y2 = 4x then find the value of m. - Mathematics

Advertisements
Advertisements

Question

If the line y = mx + 1 is tangent to the parabola y2 = 4x then find the value of m.

Sum

Solution

Given that y2 = 4x   ......(i)

And y = mx + 1   .....(ii)

From equation (i) and (ii) we get

(mx + 1)2 = 4x

⇒ m2x2 + 1 + 2mx – 4x = 0

⇒ m2x2 + (2m – 4)x + 1 = 0

Applying condition of tangency, we have

(2m – 4)2 – 4m2 × 1 = 0

⇒ 4m2 + 16 – 16m – 4m2 = 0

⇒ – 16m = – 16

⇒ m = 1

Hence, the required value of m is 1.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Conic Sections - Exercise [Page 203]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 11 Conic Sections
Exercise | Q 19 | Page 203

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the equation of the parabola that satisfies the following condition:

Focus (0, –3); directrix y = 3


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0) passing through (2, 3) and axis is along x-axis


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0), passing through (5, 2) and symmetric with respect to y-axis.


If a parabolic reflector is 20 cm in diameter and 5 cm deep, find the focus.


Find the equation of the parabola whose: 

focus is (3, 0) and the directrix is 3x + 4y = 1


Find the equation of the parabola whose: 

 focus is (1, 1) and the directrix is x + y + 1 = 0


Find the equation of the parabola whose: 

 focus is (0, 0) and the directrix 2x − y − 1 = 0

 


Find the equation of the parabola whose: 

 focus is (2, 3) and the directrix x − 4y + 3 = 0.


Find the equation of the parabola if 

 the focus is at (−6, −6) and the vertex is at (−2, 2)


Find the equation of the parabola if 

the focus is at (0, −3) and the vertex is at (0, 0) 


Find the equation of the parabola if the focus is at (0, −3) and the vertex is at (−1, −3)


Find the equation of a parabola with vertex at the origin, the axis along x-axis and passing through (2, 3).


The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest wire being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle. 


Find the coordinates of points on the parabola y2 = 8x whose focal distance is 4.   


If the line y = mx + 1 is tangent to the parabola y2 = 4x, then find the value of m


Write the equation of the parabola with focus (0, 0) and directrix x + y − 4 = 0.


The parametric equations of a parabola are x = t2 + 1, y = 2t + 1. The cartesian equation of its directrix is 


The equation of the parabola whose focus is the point (2, 3) and directrix is the line x – 4y + 3 = 0 is ______.


Find the length of the line segment joining the vertex of the parabola y2 = 4ax and a point on the parabola where the line segment makes an angle θ to the x-axis.


If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.


Find the equation of the following parabolas:

Directrix x = 0, focus at (6, 0)


Find the equation of the following parabolas:

Vertex at (0, 4), focus at (0, 2)


If the focus of a parabola is (0, –3) and its directrix is y = 3, then its equation is ______.


If the vertex of the parabola is the point (–3, 0) and the directrix is the line x + 5 = 0, then its equation is ______.


The equation of the ellipse whose focus is (1, –1), the directrix the line x – y – 3 = 0 and eccentricity `1/2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×