English

If the focus of a parabola is (0, –3) and its directrix is y = 3, then its equation is ______. - Mathematics

Advertisements
Advertisements

Question

If the focus of a parabola is (0, –3) and its directrix is y = 3, then its equation is ______.

Options

  • x2 = –12y

  • x2 = 12y

  • y2 = –12x

  • y2 = 12x

MCQ
Fill in the Blanks

Solution

If the focus of a parabola is (0, –3) and its directrix is y = 3, then its equation is x2 = –12y.

Explanation:

According to the definition of parabola

`sqrt((x - 0)^2 + (y + 3)^2) = |(y - 3)/sqrt((0)^2 + (1)^2)|`

⇒ `sqrt(x^2 + y^2 + 9 + 6y) = |y - 3|`

Squaring both sides, we have

x2 + y2 + 9 + 6y = y2 + 9 – 6y

⇒ x2 + 9 + 6y = 9 – 6y

⇒ x2 = – 12y

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Conic Sections - Exercise [Page 206]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 11 Conic Sections
Exercise | Q 51 | Page 206

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the coordinates of the focus, axis of the parabola, the equation of directrix and the length of the latus rectum.

x2 = 6y


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0) focus (–2, 0)


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0) passing through (2, 3) and axis is along x-axis


The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle.


Find the equation of the parabola whose: 

focus is (3, 0) and the directrix is 3x + 4y = 1


Find the equation of the parabola whose: 

 focus is (2, 3) and the directrix x − 4y + 3 = 0.


Find the equation of the parabola if 

 the focus is at (−6, −6) and the vertex is at (−2, 2)


Find the equation of the parabola if  the focus is at (0, 0) and vertex is at the intersection of the lines x + y = 1 and x − y = 3. 


Find the equation of a parabola with vertex at the origin and the directrix, y = 2. 


Find the equation of the parabola whose focus is (5, 2) and having vertex at (3, 2). 


Find the equations of the lines joining the vertex of the parabola y2 = 6x to the point on it which have abscissa 24. 


Write the equation of the directrix of the parabola x2 − 4x − 8y + 12 = 0. 


PSQ is a focal chord of the parabola y2 = 8x. If SP = 6, then write SQ


Write the equation of the parabola whose vertex is at (−3,0) and the directrix is x + 5 = 0. 


The parametric equations of a parabola are x = t2 + 1, y = 2t + 1. The cartesian equation of its directrix is 


The line 2x − y + 4 = 0 cuts the parabola y2 = 8x in P and Q. The mid-point of PQ is


The equation 16x2 + y2 + 8xy − 74x − 78y + 212 = 0 represents 


The locus of the points of trisection of the double ordinates of a parabola is a 


The equation of the parabola whose focus is (1, −1) and the directrix is x + y + 7 = 0 is


The equations of the lines joining the vertex of the parabola y2 = 6x to the points on it which have abscissa 24 are ______.


The equation of the parabola whose focus is the point (2, 3) and directrix is the line x – 4y + 3 = 0 is ______.


Find the length of the line segment joining the vertex of the parabola y2 = 4ax and a point on the parabola where the line segment makes an angle θ to the x-axis.


If the line y = mx + 1 is tangent to the parabola y2 = 4x then find the value of m.


Find the equation of the following parabolas:

Vertex at (0, 4), focus at (0, 2)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×