English

Write the Equation of the Directrix of the Parabola X2 − 4x − 8y + 12 = 0. - Mathematics

Advertisements
Advertisements

Question

Write the equation of the directrix of the parabola x2 − 4x − 8y + 12 = 0. 

Solution

Given:
x2 − 4x − 8y + 12 = 0 

\[\Rightarrow \left( x - 2 \right)^2 - 4 - 8y + 12 = 0\]
\[ \Rightarrow \left( x - 2 \right)^2 = 8\left( y - 1 \right) \left( 1 \right)\]

Let Y = y−1, \[X = x - 2\] 

∴ From (1), we have: 

\[X^2 = 8Y\] 

Comparing with \[x^2 = 4ay\] 

\[a = 2\] 

Directrix = Y = −a
⇒ − 1 = −a
 ⇒y = −a + 1
     = −2 + 1
     = −1 

Therefore, the required equation of the directrix is \[y = - 1\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 25: Parabola - Exercise 25.2 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 25 Parabola
Exercise 25.2 | Q 3 | Page 28

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the equation of the parabola that satisfies the following condition:

Focus (6, 0); directrix x = –6


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0) focus (–2, 0)


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0) passing through (2, 3) and axis is along x-axis


Find the equation of the parabola that satisfies the following condition:

Vertex (0, 0), passing through (5, 2) and symmetric with respect to y-axis.


An arch is in the form of a parabola with its axis vertical. The arch is 10 m high and 5 m wide at the base. How wide is it 2 m from the vertex of the parabola?


An equilateral triangle is inscribed in the parabola y2 = 4 ax, where one vertex is at the vertex of the parabola. Find the length of the side of the triangle.


Find the equation of the parabola whose: 

focus is (3, 0) and the directrix is 3x + 4y = 1


Find the equation of the parabola whose: 

 focus is (1, 1) and the directrix is x + y + 1 = 0


Find the equation of the parabola whose: 

 focus is (2, 3) and the directrix x − 4y + 3 = 0.


Find the equation of the parabola whose focus is the point (2, 3) and directrix is the line x − 4y + 3 = 0. Also, find the length of its latus-rectum.

 


Find the equation of the parabola if 

the focus is at (0, −3) and the vertex is at (0, 0) 


Find the equation of the parabola if the focus is at (0, −3) and the vertex is at (−1, −3)


Find the equation of the parabola if the focus is at (a, 0) and the vertex is at (a', 0) 


The cable of a uniformly loaded suspension bridge hangs in the form of a parabola. The roadway which is horizontal and 100 m long is supported by vertical wires attached to the cable, the longest wire being 30 m and the shortest wire being 6 m. Find the length of a supporting wire attached to the roadway 18 m from the middle. 


If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.  


If the line y = mx + 1 is tangent to the parabola y2 = 4x, then find the value of m


Write the equation of the parabola with focus (0, 0) and directrix x + y − 4 = 0.


PSQ is a focal chord of the parabola y2 = 8x. If SP = 6, then write SQ


The parametric equations of a parabola are x = t2 + 1, y = 2t + 1. The cartesian equation of its directrix is 


If the coordinates of the vertex and the focus of a parabola are (−1, 1) and (2, 3) respectively, then the equation of its directrix is 


The locus of the points of trisection of the double ordinates of a parabola is a 


The equation of the parabola whose focus is (1, −1) and the directrix is x + y + 7 = 0 is


An equilateral triangle is inscribed in the parabola y2 = 4ax whose one vertex is at the vertex of the parabola. Find the length of the side of the triangle.


Find the coordinates of a point on the parabola y2 = 8x whose focal distance is 4.


Find the length of the line segment joining the vertex of the parabola y2 = 4ax and a point on the parabola where the line segment makes an angle θ to the x-axis.


If the points (0, 4) and (0, 2) are respectively the vertex and focus of a parabola, then find the equation of the parabola.


Find the equation of the following parabolas:

Vertex at (0, 4), focus at (0, 2)


Find the equation of the following parabolas:

Focus at (–1, –2), directrix x – 2y + 3 = 0


Find the equation of the set of all points the sum of whose distances from the points (3, 0) and (9, 0) is 12.


Find the equation of the set of all points whose distance from (0, 4) are `2/3` of their distance from the line y = 9.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×